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Abstract

This paper studies estimation and inference in the context of a dynamic spatial

model with interactive effects. An instrumental variables interactive fixed effects

(IV-IFE) estimator is proposed which provides consistent and asymptotically un-

biased estimates of model parameters, as long as the cross-sectional dimension of

the data grows sufficiently fast relative to number of time periods and the number

of instruments. This trivially includes where both the number of time periods and

the number of instruments are fixed. Nonetheless, circumstances exist where the

estimator can exhibit asymptotic bias, the extent to which depends, in part, on

the structure of the spatial dependence. A bias corrected estimator is constructed,

which, through simulation, is demonstrated to be an effective remedy to this issue.

An empirical application utilises the method to study the relationship between eco-

nomic growth, civil liberties and political rights in the 21st century.

.Keywords: interactive fixed effects, dynamic panels, spatial panels.

JEL classification: C13, C33, C38.

1 Introduction

1.1 Overview

Many, if not most panel data sets exhibit some degree of dependence, whether that

be across time, between cross-sectional units, or both. When researchers set out to
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quantify the strength of these dependencies, linear autoregressive models are frequently

used. Within this family of models, the time series autoregressive model, known simply

as the AR model, is the prototype, with its roots dating back to the work of Yule,

Walker, and Wold (amongst others), in the early part of the 20th century (Klein, 1997).

The analogue of this model in the context of spatial data is the spatial autoregressive

model (SAR), first appearing in Whittle (1954), and set out fully in Cliff and Ord (1973,

1981).1 These models provide a flexible way to model dependent data, and are useful

not just for measuring the extent to which dependence may exist, but also for modelling

more complicated channels through which changes in one variable may impact another.

This usefulness is only magnified in the context of panel data where linear autoregressive

models provide a parsimonious way to model complicated processes that evolve both over

time and across space.

Correlation in outcomes may, however, arise for a myriad of reasons, and economists

may wish to distinguish between different sources. In particular, a distinction is typ-

ically made between correlation that arises due to state dependence, and that driven

by unobserved factors. The former, more typically discussed in context of AR models,

describes the causal impact which outcomes in the past, or in neighbouring locations,

have on present outcomes (Heckman, 1981). The latter describes correlation in out-

comes arising for a broader set of reasons, such as unobserved heterogeneity, or from

exposure to common shocks or a common environment. When seeking to confirm or to

refute the presence of state dependence, it is common practice to also control for unob-

served factors, and thereby raise the threshold before which correlation in outcomes is

taken as evidence in favour of true state dependence. In the context of panel models,

unobserved factors have traditionally been controlled for by modelling additive effects,

however, modelling interactive effects has become increasingly popular, as this provides

a more general way to control for these unobserved features of the data.

This paper develops an instrumental variables (IV) estimator for dynamic spatial

models with interactive effects, which possesses several benefits when compared to al-

ternative estimation approaches which might be considered in this context. Foremost

amongst these is simplicity, as estimation reduces to a univariate optimisation problem

which depends only on the parameter of interest in the model, and therefore does not

(directly) depend on any number of nuisance parameters which may arise as a conse-

quence of modelling a factor structure in the error, or due to heteroskedasticity.2 This

is unlike existing estimators, and is useful not just from the point of view of practical-

ity, but also in terms of establishing the asymptotic properties of the estimator. The

1Although the discussion in this paper tacitly assumes that the notion of space is tied to a physical
location, it should be emphasised that the model (and estimation approach) equally apply to settings
where the notion of space is interpreted more abstractly. Examples of this include models of social
interaction between individuals, relations between firms, and dependencies between financial assets.

2Though sometimes innocuous, the possible heteroskedasticity of regression errors can pose a major
obstacle to the estimation of spatial models, particularly within a likelihood framework; see, e.g., Lin
and Lee (2010).
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paper focuses primarily on short panels, and assumes that a large set of instruments is

available, motivated by the observation that the reduced form of the model implies a

rich set of internally generated instruments that can be used in estimation. Allowing

for lagged outcomes (in both space and time) to appear as regressors, interactive ef-

fects, and a large number of instruments is challenging in a short panel, and to the best

of the author’s knowledge there is currently no alternative method which addresses all

three issues. The main result of this paper establishes that, provided the cross-sectional

dimension of the panel (n) grows sufficiently fast relative to the number of time peri-

ods (T ), and the number of instruments (m), the estimator is consistent, unbiased and

asymptotically normal. This trivially includes where the number of time periods and

the number of instruments is fixed. However, when n grows more slowly, the estimator

can exhibit a sizeable asymptotic bias which depends, in part, on the structure of spatial

dependence in outcomes. To address this issue, a bias-corrected estimator is formulated

and demonstrated through simulation to be a reliable method for conducting inference.

An empirical application utilises the method to examine the relationship between eco-

nomic growth, civil liberties, and political rights in the 21st century, with the findings

being that increased political rights and civil liberties within a country results in higher

values of GDP per capita in the long run.

2 Related Literature

Under an asymptotic where the dimension of the cross-section and the time series are

both large, quasi-maximum likelihood (QML) estimators are available to estimate dy-

namic spatial models with interactive effects, such as those proposed by Shi and Lee

(2017) and Bai and Li (2021). These estimators sometimes possess a very useful property

that the implied estimates of the factors and the loadings are given by solutions to stan-

dard principal component problems. This makes their estimation, whether implicitly or

explicitly, significantly more straightforward (see, e.g., Bai (2009); Moon and Weidner

(2015)). In Shi and Lee (2017), the authors introduce a simple estimator which avoids

directly estimating the factors and loadings by concentrating these out using principal

components. Bai and Li (2021) relax the homoskedasticity assumption imposed in Shi

and Lee (2017) and allow for cross-sectional (though not temporal) heteroskedasticity

through modelling additional variance parameters. This, however, comes at the cost

of complexity since it introduces another larger set of nuisance parameters, in addition

to the factors and the loadings. Both estimators are consistent as n, T → ∞, though

they suffer from asymptotic bias. This is typical of QML estimators in the presence of

high-dimensional nuisance parameters, in which case the incidental parameter problem

usually manifests as an asymptotic bias when both dimensions of the panel are asymp-

totically proportional. However, when n → ∞ but T is fixed, these estimators are, in

general, inconsistent, in which case it becomes necessary to resort to alternative, and
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often more bespoke estimation strategies.

Li and Yang (2023) develop a modified QML estimator that provides consistent and

asymptotically unbiased estimates of common parameters with T fixed and n → ∞.

Their approach is based on the idea of recentering the profile score, which has been

successfully applied in other contexts as a resolution to the inconsistency of maximum

likelihood estimators in the presence of high-dimensional nuisance parameters (see, e.g.

McCullagh and Tibshirani (1990)). They approach the interactive effects in a similar

manner to Ahn et al. (2013) which, in essence, involves shifting the incidental param-

eter problem from both dimensions of the panel onto only the time dimension. This,

however, does not free the estimation problem entirely of nuisance parameters, and still

necessitates solving a set of nonlinear adjusted score equations over the common param-

eters and a set of T -dimensional nuisance parameters. Moving away from a likelihood

framework, Kuersteiner and Prucha (2020) study a generalised method of moments

(GMM) estimator which affords a great deal of generality, not only relaxing strict ex-

ogeneity of the regressors (aside from lagged outcomes), which is assumed by all the

aforementioned methods, but also allowing for a possibly endogenous weights matrix.

They introduce an innovative generalised Helmert transformation which, similar to the

Ahn et al. (2013) approach, shifts the incidental parameter problem onto only the time

dimension. However, this transformation is engineered so as not to produce correlation

in the errors and to maintain sequential exogeneity of regressors and weights matrices

which allows for linear and quadratic moments to be constructed using the transformed

model. Nonetheless, this also does not produce an estimation problem which is entirely

free of nuisance parameters.

Recently Cui et al. (2022) have studied an IV estimator for a dynamic spatial model

with interactive effects which combines the common correlated effects approach to mod-

elling interactive effects (Pesaran, 2006) with the use of principal components. Their

two-step approach is designed for large panels and yields a consistent and asymptoti-

cally unbiased estimator as both n, T → ∞. However, their approach is unsuitable for

short panels and they do not consider the possibility that the number of instruments

may also be increasing with sample size. This paper also relates to a much wider set

of literatures concerning spatial models (Kelejian and Prucha, 1998; Lee, 2002, 2003,

2004), spatial panel models with additive fixed effect (Lee and Yu, 2010a,b, 2014), panel

models with interactive effects (Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015),

and instrumental variables with interactive effects (Ahn et al., 2001, 2013; Robertson

and Sarafidis, 2015; Lee et al., 2012).

Notation: Throughout the paper, all vectors and matrices are real unless stated

otherwise. Let A be an n × m matrix with elements Aij . When m = n, and the

eigenvalues of A are real, they are denoted as µmin(A) := µn(A) ≤ . . . ≤ µ1(A) =:

µmax(A). Let PA := A(A>A)+A> and MA := In − PA, where In is the n × n

identity matrix and + denotes the Moore-Penrose generalised inverse. An n× 1 vector
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of all ones is denoted ιn, an n × 1 vector of all zeros is denoted 0n, and an n × m

matrix of zeros is denoted 0n×m. For a matrix A which potentially has an increasing

dimension, Op(1) is used to indicate that ‖A‖2 = Op(1) and, similarly, Op(1) signifies

that ‖A‖2 = Op(1). Throughout, c is used to denote some arbitrary positive constant.

The operation vec(·) applied to an n ×m matrix A creates an nm × 1 vector vec(A)

by stacking the columns of A. The operation diag(B) applied to an n × n matrix B

creates an n × n diagonal matrix diag(B) which contains the diagonal elements of B

along its diagonal and off(B) := B − diag(B). A sequence of n× n matrices Cn is said

to be uniformly bounded in absolute row and column sums (UB) if both the sequences

‖Cn‖1 and ‖Cn‖∞ are bounded.

3 Model and Estimation

3.1 Dynamic Spatial Model

The model studied in this paper assumes that amongst a cross-section of n units, in-

dexed i = 1, . . . , n, over a number of time periods t = 1, . . . , T , outcomes are generated

according to

yt = ρWyt + αyt−1 + φWyt−1 +Xtβ + ηt, (3.1)

where yt, and ηt are n×1 vectors of outcomes and error terms, respectively, Xt is an n×
K matrix of covariates, β is a K×1 parameter vector, ρ, α and φ are scalar parameters,

and W is an n×n weights matrix. It should be highlighted that throughout this paper

the term ‘covariates’ will be applied exclusively to the variable Xt. The term regressors

will be used to describeWyt, yt−1, Wyt−1 andXt collectively. The parameters ρ and α

quantify the strength of purely spatial, or purely temporal dependence in the data, while

φ provides a measure of dependence across both time and space. The weights matrix

W , which is assumed to be observed, summarises the structure of spatial dependence,

with larger elements indicating a closer proximity.3 It is assumed that W has a zero

diagonal, which, if coupled with the assumption that W is row-normalised, gives Wyt

and Wyt−1 the interpretation of being weighted averages of outcomes omitting location

i. Although dependent only on a few common parameters, the dynamic spatial model

belies a significant amount of heterogeneity and, in particular, it gives rise to marginal

effects that are both location and time dependent. For ease of exposition, outcomes are

assumed to evolve according to a first order process, that is, the process only involves

first order autoregressive terms: the extension to higher order processes is immediate.

3Since the weights matrix W is observed, this could, in principle, be allowed to vary over time at
the expense of more cumbersome notation.
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3.2 Interactive Effects

In order to control for the possible presence of latent factors, it is assumed that ηt may

be decomposed as

ηt := Λf t + εt, (3.2)

where Λ and F := (f1, . . . ,fT ) are, respectively, n×R and R× T matrices of loadings

and factors, and εt is an n × 1 vector of primitive error terms. This model provides

a flexible means of controlling for unobserved features of the data, as common factors

may vary across time and yet have a heterogeneous effect on the cross-section. It also

nests as special cases several familiar models of additive effects such as individual, time

or groups effects.

3.3 Instruments and Transformation

The parameter of interest in the model is θ := (ρ, α, φ, β>)> which is a P × 1 vector

where P := K+3. Estimation of this parameter is, however, complicated by two sources

of endogeneity. The first stems from the factor term in the error, which, in this paper,

is permitted to be arbitrarily correlated with regressors in the model. The second arises

due to the presence of a spatial and temporal lags on the right-hand side of (3.1) which

will, by construction, be correlated with both the error term ε and the factor term.

This section addresses both of these issues by applying a transformation to the model.

Before doing so, however, it is useful to first re-write the model in terms of matrices.

Let Y := (y1, . . . ,yT ), Y −1 := (y0, . . . ,yT−1), Xk be the n × T matrix containing

observations on the k-th covariate with k = 1, . . . ,K, and ε := (ε1, . . . , εT ). Moreover,

for brevity, define β ·X :=
∑K

k=1 βkXk.

With this notation, the model can be rewritten more compactly in the form

S(ρ)Y = αY −1 + φWY −1 + β ·X + ΛF> + ε, (3.3)

where S(ρ) := In − ρW . In order to allow for the possibility that components of the

factor term may be correlated with regressors in the model, both the factors and load-

ings are treated as additional (nuisance) parameters and jointly estimated alongside the

parameter of interest θ. An obvious estimation approach would be to minimise the sum

of squared residuals, which gives rise to the least squares interactive fixed effects (LS-

IFE) estimator, whose properties have been extensively studied; see, for example, Bai

(2009) and Moon and Weidner (2015). Yet in order to consistently estimate both the

n-dimensional factor loadings, and the T -dimensional factors, this approach typically

requires both dimensions of the panel to diverge. As a consequence it is well estab-

lished that the LS-IFE estimator of θ is, in general, inconsistent with T fixed. Following

Higgins (2022) it is, however, possible to first transform the model before applying the
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LS-IFE estimator in order to resolve this fixed T inconsistency. The transformation

described in that paper has three important properties: it reduces the dimension of

the model, it preserves important features of the model, and it renders the error term

asymptotically negligible. In the context of the dynamic spatial model (3.1), an equiv-

alent transformation can be constructed by utilising instrumental variables.

Assuming the error ε is independent of the covariates Xk, these variables may serve

as their own instruments. For the spatially and temporally lagged outcomes, under

some assumptions (set out in the next section) a rich set of instruments can be obtained

by considering the reduced form of the model. Assume S(ρ) is invertible and can be

expanded in the Neumann series

S−1(ρ) =

∞∑
h=0

(ρW )h. (3.4)

Since this implies

Y =
∞∑
h=0

(ρW )h(αY −1 + φWY −1 + β ·X + ΛF> + ε), (3.5)

then, assuming that at least one element in β is nonzero, it is possible to generate

a multitude of instruments for Y using powers of the weights matrix interacted with

the covariates Xk: for example, with β1 6= 0, X1,WX1,W
2X1,W

3X1 may serve as

instruments.4 Let V be an n ×m matrix containing a set of instruments. An n ×m
matrix QV can be constructed as V(V>V)−

1
2 .5 Further define

Z1 := WY

Z2 := Y −1

...
...

Z3 := WY −1

Z4 := X1

...

ZP := XK .

Then (3.3) can be premultiplied by Q>V which gives

Ỹ = θ · Z̃ + Λ̃F> + ε̃, (3.6)

where ∼ is used to denote transformed matrices, for example, Ỹ := Q>VY , and θ · Z̃ is

defined analogously to β ·X. Notice that the transformation Q>V fulfils the three roles

described previously. First, with n > m, the system (3.6) is of dimension m × T and

4The model can be easily extended to include multiple weights matrices. In this event an even larger
set of instruments can be generated since S−1(ρ) = In+

∑S
s=1 ρs1Ws1 +

∑S
s1=1

∑S
s2=1 ρs1ρs2Ws1Ws2 +∑S

s1=1

∑S
s2=1

∑S
s3=1 ρs1ρs2ρs3Ws1Ws2Ws3 + · · · .

5Implicitly it has been assumed that the matrix V has full column rank m. Suppose that this is not
the case and that V has instead rank m∗ < m. Take a ‘short’ singular value decomposition V := USV >,
where U is n×m∗, S is m∗ ×m∗, and V is m∗ ×m. Define V∗ := US. One can then proceed in the
same way, using V∗ and m∗ in lieu of V and m.
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therefore now presents a lower dimensional estimation problem where, in particular,

the transformed factor loadings Λ̃ are m × R. Second, this transformation preserves

two important features of the model: the covariates, and the low-rank structure of the

factor term. Intuitively Q>V ‘projects’ onto the m-dimensional subspace spanned by the

columns of V . If the columns ofX1, . . . ,XK are included in V , the covariates are wholly

preserved under the transformation. For the regressors WY , Y −1 and WY −1, while

these are not fully preserved, due to their correlation with the instruments, these will

be partially preserved under Q>V . Finally, when the weights matrix W is nonstochastic

and the covariates Xk are independent of ε, as will be assumed throughout this paper,

the transformation also serves to reduce the order of the error term.6

3.4 IV-IFE Estimator

Using a chosen set of instruments, estimation proceeds by minimising the following least

squares objective function

Q(θ, Λ̃,F ) :=
1

nT
tr

((
Ỹ − θ · Z̃ − Λ̃F>

)> (
Ỹ − θ · Z̃ − Λ̃F>

))
. (3.7)

Both the factors and the transformed loadings can be concentrated out of (3.7), in which

case one arrives at an objective function involving θ alone,

Q(θ) :=
1

nT

T∑
r=R+1

µr

((
Ỹ − θ · Z̃

)> (
Ỹ − θ · Z̃

))
, (3.8)

that is, the profile objective function now involves the sum of the (T − R) smallest

eigenvalues of the right hand-side matrix.7 The IV-IFE estimator θ̂ is then defined as

θ̂ := arg min
θ∈Θ

Q(θ). (3.9)

4 Consistency

Throughout the following, both Λ and F are treated as fixed parameters in estimation

and the subscript 0 is now introduced to distinguish true parameter values. Let Π denote

a T × T shift matrix, which is all zeros, except those elements directly above the main

diagonal which take a value of 1, A(ρ, α,φ) := S−1(ρ)(αIn + φW ), Π̄ := (Π> ⊗ In),

W̄ := (IT ⊗W ), and B̄(ρ, α, φ) := InT − ρW̄ −αΠ̄−φW̄ Π̄. Moreover, let |A| denote

the entrywise absolute value of a matrix, Θ denote the parameter space for θ, and

Θρ,Θα and Θφ denote the parameter spaces for ρ, α and φ, respectively. The following

assumptions are made.

6See Higgins (2022) for additional details.
7In order to obtain the objective function (3.8), a number of factors R must be assumed. For the

moment it is assumed that this number equals or exceeds the true number.
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Assumption MD (Model). .

(i) The parameter vector θ0 is in the interior of Θ, where Θ is a compact subset of

RP .

(ii) The weights matrix W has a zero diagonal, is nonstochastic and UB.

(iii) For all ρ ∈ Θρ, α ∈ Θα and φ ∈ Θφ, |det(S(ρ))| ≥ c > 0, |det(B̄(ρ, α, φ))| ≥ c >

0, and ‖A(ρ, α, φ)‖2 < 1 − c holds for all (n, T ), and S−1(ρ), B̄
−1

(ρ, α, φ) and∑∞
h=1 |A

h(ρ, α, φ)| are UB.

(iv) xkit, λ0,ir and f0,tr have uniformly bounded fourth moments.

(v) The errors εit are independent of the factors, the loadings, and the covariates, and

are also independent over i and t with E[εit] = 0, E[ε2
it] =: σ2

it > 0 and uniformly

bounded fourth moments.

Assumption MD sets out a basic set of assumptions the model is assumed to satisfy.

MD(iii) ensures that the matrix S(ρ) is invertible and can be expanded as a Neumann

series for all values of ρ in the parameter space. A more primitive condition for this is

that ‖ρW ‖ < 1 for some norm ‖·‖. If, for example, the weights matrix is row-normalised,

this holds when |ρ| < 1. Similarly, the condition ‖ρW̄+αΠ̄+φW̄ Π̄‖ < 1 for some norm

is sufficient for the invertibility of B̄(ρ, α, φ). Under row-nominalisation of the weights

matrix, this holds if |ρ|+ |α|+ |φ| < 1. These assumptions also ensure dependence across

both space and over time is sufficiently limited as to obtain by recursive substitution

yt =

∞∑
h=0

Ah(ρ0, α0, φ0)S−1(ρ0)(Xt−hβ0 + Λ0f0,t−h + εt−h),

for all values of θ in the parameter space. Assumption MD(v) assumes the errors are

independent of the factors, the loadings and the covariates as in Bai (2009). This

assumption also allows for (unconditional) heteroskedasticity in both dimensions of the

panel.

Assumption CS (Consistency). .

(i) R ≥ R0 := rank(Λ̃0F
>
0 ).

(ii) minδ∈RP :‖δ‖2=1

∑T
r=R+R0+1 µr(

1
nT (δ · Z̃)>(δ · Z̃)) ≥ c > 0, w.p.a.1 as n→∞.

Assumption CS(i) allows for the true number of factors, R0, to be unknown as

long as the number of factors used in estimation, R, is no less than R0. Assumption

CS(ii) is a multicollinearity condition and requires there to remain a sufficient amount

of variation in the regressors after having been transformed by the matrix QV and then

been projected orthogonal to arbitrary R × T factors and R0 ×m factor loadings. An

important implication of this assumption is that at least one element of β0 must be
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nonzero to ensure that the covariates can be used to construct a valid set of instruments

for the lagged outcomes.

Proposition 1 (Consistency). Under Assumptions MD and CS, as n→∞,

‖θ̂ − θ0‖2 = Op
(√

m

n

)
.

The main insight from Proposition 1 is that if m/n→ 0 the estimator is consistent.

In the case in which the number of instruments m is fixed, this result establishes that

the estimator is
√
n-consistent. Notice that this condition does not depend directly on

the number of time periods T . However, if the matrix of instruments V includes all

columns for some Xk, then the number of instruments will be increasing with T . For

instance, suppose K = 1 and V = (X,WX). In this event m = O(T ) whereby θ̂

would be consistent under Proposition 1 when T/n → 0. This trivially includes where

T is fixed. It is also worth highlighting that this result is obtained imposing quite weak

conditions on the regression error η. In particular heteroskedasticity is permitted in

both dimensions of the panel, and the factors may be strong, weak or nonexistent.

5 Asymptotic Distribution

5.1 Main Result

Assumption AD below sets out conditions under which it is possible to derive an asymp-

totic expansion of the objective function around the true parameter value, and to then

characterise the asymptotic distribution of the estimator. Ahead of this some additional

notation is introduced. Let πt be a T × 1 canonical vector, that is, it consists of all

zeros, except the t-th element which equals 1. The following matrices are also defined:

Ḡ(α, φ) := αInT + φW̄ ,

C̄(ρ, α, φ) := (InT + Π̃B̄
−1

(ρ, α, φ)Ḡ(α, φ)),

S := S(ρ0), B̄ := B̄(ρ0, α0, φ0), Ḡ := Ḡ(α0, φ0) and C̄ := C̄(ρ0, α0, φ0). Moreover, let

h1 := W̄ B̄
−1

vec(X · β0 + Λ0F
>
0 )

h2 := Π̄B̄
−1

vec(X · β0 + Λ0F
>
0 )

h3 := W̄ Π̄B̄
−1

vec(X · β0 + Λ0F
>
0 )

h4 := vec(X1)

...

hP := vec(XK)

r1,h := W̄ B̄
−1
Ḡvec(AhS−1X−hβ0π

>
T )

r2,h := C̄vec(AhS−1X−hβ0π
>
T )

r3,h := W̄ C̄Ḡvec(AhS−1X−hβ0π
>
T )

r4,h = 0nT

...

rP,h = 0nT

,
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rp :=
∑∞

h=0 rp,h, H := (h1, . . . ,hP ), R := (r1, . . . , rP ), and M̄ := (MF 0⊗QVM Λ̃0
Q>V).

Assumption AD (Asymptotic Distribution). .

(i) R = R0.

(ii) 1
nΛ̃
>
0 Λ̃0

p−→ ΣΛ̃0
as n→∞, with µR0(ΣΛ̃0

) > 0 and µ1(ΣΛ̃0
) <∞.

(iii) µR0( 1
T F
>
0 F 0) > 0 and µ1( 1

T F
>
0 F 0) <∞.

(iv) The elements of the matrices M̄H̃ and M̄R̃ have uniformly bounded fourth

moments for all (n, T ).

Assumption AD(i) assumes that the true number of factors is known. In the absence

of lagged outcomes Moon and Weidner (2015) show that the asymptotic distribution

of the LS-IFE is unaffected by overstatement of the number of factors, under certain

conditions. Simulation evidence suggests that also holds true for the IV-IFE estimator,

but to establish this formally lies beyond the scope of this paper. Methods to detect

the correct number of factors are discussed elsewhere and, in particular, the eigenvalue

ratio test described in Higgins (2022) (Section 6.3) is applicable in the present context.

Assumptions AD(ii) and AD(iii) assume the factors and the transformed factor loadings

are both strong, that is to say that the factor term has a nonnegligible impact on the

variance of the regression error.

Theorem 1 (Asymptotic Distribution). Under Assumptions MD, CS and AD, with

γ2
nm := m2T/n→ c ≥ 0 as n,m→∞,

√
nT (θ̂ − θ0)

d−→ N
(
∆−1ψ,∆−1Ω∆−1

)
,

where,

ψn :=
1√
nT

(
tr
(
ΣM̄W̄ B̄

−1
)

0(K+2)

)
,

ψ := plimn→∞ψn, ∆n := (nT )−1(H + R)>M̄(H + R), ∆ = plimn→∞∆n, Ωn :=

(nT )−1(H + R)>M̄ΣM̄(H + R), Ω := plimn→∞Ωn, and Σ is an nT × nT matrix

with diagonal elements σ2
11, . . . , σ

2
nT and remaining elements equal to zero.

Without further restrictions, the order of the term ψn is γnm.8 As a consequence,

if the dimension of the cross-section grows sufficiently fast relative to the number of

instruments and the number of time periods such that γ2
nm → 0 (this trivially includes

where both m and T are fixed), then the IV-IFE estimator is asymptotically unbiased

with a standard sandwich form for the covariance matrix. On the other hand, if γ2
nm →

c > 0, the estimator may be asymptotically biased. In any given instance, the precise

8Although ψn is stochastic, it nonetheless has a nonstochastic bound.

11



order of the bias depends on the structure of the weights matrix, and also how close

to orthogonal the columns of the weights matrix are to the instruments. To see this,

suppose, for simplicity, that Σ = σ2InT with σ2 > 0. Using (??) in Appendix ??, as

n→∞ and m/n, T/n→ 0,9

ψn,1 =
σ2

√
nT

tr(W̄ S̄
−1
P̄ ) + O(1)

= σ2

√
T

n
tr(WS−1PV) + O(1),

where P̄ := (IT ⊗ PV). Define

cos(ϑ) =
tr(WS−1PV)

‖WS−1‖F ‖PV‖F
,

which measures the angles between the columns of the matrices WS−1 and PV . Then

ψn,1 = σ2

√
mT

n
cos(ϑ)‖WS−1‖F + O(1),

using ‖PV‖F =
√
m. The terms cos(ϑ) and ‖WS−1‖F can be understood to represent,

respectively, the contribution to the bias stemming from the closeness of the instruments

and the weights matrix (in terms of the angle ϑ), and from the structure of the weights

matrix itself. Since cos(ϑ) ∈ [−1, 1], the sign of the bias will depend on how aligned the

columns of W are with those of PV . In the extreme, if PVW = 0n×n, then ψn,1 will

be exactly zero.10 More generally, with cu ≥ µi(W ) ≥ cl > 0, cos(ϑ) → 0 as n → ∞,

provided m does not grow too fast. One the other hand, using

µi(WS−1) =
µi(W )

1− ρµi(W )
,

and √√√√ n∑
i=1

µ2
i (WS−1) ≤ ‖WS−1‖F , 11

then with cu ≥ µi(W ) ≥ cl > 0, ‖WS−1‖F → ∞ as n → ∞. It is, therefore, evident

that there is a tension between these terms when it comes to determining the exact

order of ψn. The following example illustrates the role that the structure of the weights

matrix, summarised by its eigenvalues, has on the magnitude of the asymptotic bias.

Example 1 (Group Structure). Suppose that the cross-section is partitioned into G

9Notice (??) in Appendix ?? does not require the symmetry of W .
10Notice W need not be full rank.
11See e.g. Fact 9.11.3. in Bernstein (2009).
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disjoint groups, where within each groups, all units are mutually connected with equal

weights. This produces a weights matrix of the from

W =


W 1 0 . . . 0

0 W 2 . . . 0
...

...
. . .

...

0 0 . . . WG

 with Wg =
1

ng − 1


0 1 . . . 1

1 0 . . . 1
...

...
. . .

...

1 1 . . . 0

 , (5.1)

for g = 1, . . . , G, where ng denotes the number of units in group g which satisfies

n1 + . . . + nG = n. Let nmin := min1≤g≤G ng and nmax := max1≤g≤G ng. Assuming

|ρ| < 1, then the bounds established in Appendix ?? give,√
T

n
µmin(Σ)

m∑
i=1

µn−i+1(W )

1− ρµn−i+1(W )
≤ ψ1 ≤

√
T

n
µmax(Σ)

m∑
i=1

µi(W )

1− ρµi(W )
, (5.2)

which holds w.p.a.1 as n → ∞ and where σ2
min := µmin(Σ) and σ2

max := µmax(Σ).

Notice that with the weights matrix structured as in (5.1), µ1(W g) = 1 and µi(W g) =

−1/(ng − 1) for i = 1, . . . , ng − 1. As a result, W will have G eigenvalues of 1, n1 − 1

being −1/(n1 − 1), n2 − 1 being −1/(n1 − 1), and so on. Using this

m∑
i=1

µn−i+1(W )

1− ρµn−i+1(W )
≥ − m

nmin + (ρ− 1)
,

and

m∑
i=1

µi(W )

1− ρµi(W )
=

m

1− ρ
if G ≥ m,

m∑
i=1

µi(W )

1− ρµi(W )
≤ G

1− ρ
− (m−G)

nmax + (ρ− 1)
if G < m.

In this way, it can be seen that the order of the bias can be related to the number of

groups and the maximum and minimum group size. In one scenario, if n,m,G → ∞
and nmin, nmax stay fixed, then (5.2) does not provide a sharper order than γnm. On the

other hand, if n,m, nmin →∞, m/nmin → 0 and G is held fixed, then

ψ1 = O

(√
T

n

)
,

that is, the order of the bias will not depend on the number of instruments.
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6 Further Results

6.1 Inference

In order to conduct inference, it is possible to estimate the vector ψ and the matrix ∆

and then construct a bias corrected estimator. This, coupled with a consistent estimator

of Ω, allows for the construction of asymptotically valid confidence intervals. The follow-

ing results are built on consistent estimators for the projectors MF 0 and M Λ̃0
. Notice,

however, that the minimisers of (3.7) with respect to the factors and the transformed

loadings are not unique. In order to resolve this indeterminacy, estimators are defined in

the following manner. Assume m > T . Consider a (short) singular value decomposition

of (nT )−
1
2 (Ỹ − θ̂ · Z̃) =:

∑T
t=1 stutv

>
t with singular values sT ≤ . . . ≤ s1. Then define

ˆ̃Λ := (u1, . . . ,uR0) and F̂ := (s1v1, . . . , sR0vR0). Although these estimators will not, in

general, be consistent for F 0 and Λ̃0 themselves, they will produce consistent estimators

of projectors MF 0 and M Λ̃0
.

Define the estimators

ψ̂1 :=
1√
nT

tr

(
Σ̂ ˆ̄MW̄ ˆ̄B

−1
)
,

∆̂ :=
1

nT
Z> ˆ̄MZ,

Ω̂ :=
1

nT
Z> ˆ̄MΣ̂ ˆ̄MZ,

where Z := (vec(Z1), . . . , vec(ZP )), Σ̂ := Γ(vec(Y − θ̂ · Z)vec(Y − θ̂ · Z)>), ˆ̄B :=

B̄(ρ̂, α̂, φ̂), and Γ(A) := (A � (ιT ι
>
T ⊗ In)) for an nT × nT matrix A serves as a

truncation kernel.12

Proposition 2 (Inference). Under Assumptions MD, CS and AD, with γ2
nm → c ≥ 0

as n,m→∞,

‖ψ̂ −ψ‖2 = Op(1),

‖∆̂−∆‖2 = Op(1),

‖Ω̂−Ω‖2 = Op(1),

where ψ̂ := (ψ̂1, 0, . . . , 0)>.

On the basis of Proposition 2, a bias corrected estimator θ̃ := θ̂− (nT )−
1
2 ∆̂
−1
ψ̂ can

be constructed and inference may proceed in standard fashion thereafter.

12� denotes the Hadamard product.
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6.2 Specification Testing

Notice that Assumption MD implies the following moment conditions

E
[
M̄vec(η)

]
= E

[(
MF 0 ⊗QVM Λ̃0

Q>V

)
vec(η)

]
= 0nT . (6.1)

Indeed, the objective function (3.7) can be equivalently reformulated as

Q(θ) = min
Λ̃,F

1

nT

(
(MF ⊗M Λ̃Q

>
V)vec(Y − θ ·Z)

)> (
(MF ⊗M Λ̃Q

>
V)vec(Y − θ ·Z)

)
.

In this way it becomes apparent that the estimator can be interpreted as an (unweighted)

GMM estimator based on the moment conditions (6.1).13 A model specification test can

be constructed on this basis and takes the form of the following J-statistic

J := vec(η̂)>
(
M F̂ ⊗QVM ˆ̃Λ

Q>V

)
vec(η̂),

with η̂ := vec(Y − θ̂ ·Z). Let

MJ :=

(
M̄ − M̄(H + R)

(
(H + R)>M̄(H + R)

)−1
(H + R)>M̄

)
,

` := (T −R0)(m−R0)− P , and

σ2
J := tr((M(4) −Σ2)(MJ �MJ )) + 2ι>nT off(Σ(MJ �MJ )Σ)ιnT ,

where M(4) is an nT × nT matrix with diagonal elements E[ε4
11], . . . ,E[ε4

nT ] and all

remaining elements equal to zero. The following are assumed.

Assumption JT (J-Test). .

(i) The errors εit have uniformly bound eighth moments.

(ii) `−1σ2
J ≥ c > 0 w.p.a.1.

Assumption JS(i) strengthens the number of finite moments required of the primitive

error ε. Assumption JS(ii) ensures the standardised test statistic is well defined.

Theorem 2 (J-Test). Under Assumptions MD, CS, AD and JS, with γ2
nm → c ≥ 0 as

n, `→∞,

J − ϕJ
σJ

d−→ N (0, 1),

where

ϕJ := tr(ΣMJ )−ψ>n∆−1
n (H + R)>M̄(H + R)∆−1

n ψn.
13See Section 6 in Higgins (2022) for further discussion.
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The first term in of ϕJ is a standard degrees of freedom adjustment. If, for example,

the errors εit were independently distributed with unit variances then tr(ΣMJ ) = `.

Indeed, in such a case σ2
J would also collapse to 2` which, absent of the second term in

ϕJ , would produce the result

J − `√
2`

d−→ N (0, 1).

Such a result is familiar in the context of model specification testing with many instru-

ments; see, for example, Donald et al. (2003) and Anatolyev and Gospodinov (2011).

However, in this instance the asymptotic bias of the estimator θ̂ also effects the asymp-

totic distribution of the test statistic and produces an additional term in ϕJ .

6.3 Additive Effects

The bias ψn that appears in Theorem 1 originates from the implicit transformation of

the model through the projectors MF 0 and M Λ̃0
used to purge the factor term from the

error. This does not, as one might expect, arise as a consequence of having estimated

these projector matrices. Thus, such bias would occur even were the factors and loadings

observed. Suppose, for example, that the data are generated according to

Y = ρWY + αY −1 + φWY −1 + β ·X + ΛΓ +LF> + ε,

where Λ and F are observed matrices of dimension n × Rλ and T × Rf , respectively,

and L and Γ are unknown n × Rλ and T × Rf matrices. This nests as special cases

familiar models of additive effects such as individual and time effects which corresponds

to Λ = ιn and F = ιT . One may construct the estimator

θ̂AE :=
(
Z>M̄Z

)−1
Z>M̄vec(Y ),

where M̄ is now known. As n → ∞ and γ2
mn → c ≥ 0, under conditions analogous

to Assumptions MD and CS, this estimator will be asymptomatically equivalent to θ̂.

Nonetheless, although the leading order bias of both estimators is the same, there remain

terms of a lower order that arise in the asymptotic expansion of θ̂, as a consequence of

the factor and the loadings being unknown that would not arise for θ̂AE .

7 Numerical Examples

This section describes results from two Monte Carlo experiments designed to give a

sense of how the properties of the IV-IFE estimator are affected by the structure of the

weights matrix.
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7.1 Circular World

In this first experiment outcomes are generated according to

Y = ρ0WY + α0Y −1 + β0,1X1 + β0,2X2 + Λ0F
>
0 + ε,

with ρ0 = 0.5, α0 = −0.25, β0,1 = 1, and β0,2 = −1. The covariate X1 is generated as

X1 = Λ0F
>
0 + ε,

where R0 = 2, and λ0,ir, f0,tr and εit are drawn from independent standard normal

distributions. The covariate X2 is uncorrelated with the factors and the loadings with

elements drawn from independent standard normal distributions. The error term is

generated as vec(ε) := Σ
1
2 vec(u), where Σ is a diagonal matrix with nonzero elements

drawn uniformly from the interval (0, 2) and uit ∼ N (0, 1). The matrix of instruments

is specified as V := (X1,WX1,X2,WX2), with the weights matrix initially being

generated in the following way:

W :=



0 1 1 0 . . . 1

1 0 1 1 . . . 0

1 1 0 1 . . . 0

0 1 1 0 . . . 1
...

...
...

...
. . . 1

1 0 0 1 1 0


, (7.1)

before then being row-normalised. This matrix represents a ‘circular world’ in which all

the cross-sectional units have a unique location on a circle, and are connected only to

their nearest two ‘neighbours’ on either side (see, for example, Das et al. (2003)). Tables

1a and 1b below present, respectively, bias and coverage of a 95% two-sided confidence

interval for the IV-IFE estimator, across various n and T combinations, averaged over

1000 Monte Carlo draws.

Table 1a: Bias θ̂ - Circular World

ρ̂ α̂ β̂1 β̂2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.057 0.095 0.097 0.022 0.042 0.030 -0.012 -0.015 -0.016 0.021 0.029 0.019

300 0.028 0.040 0.052 0.015 0.017 0.022 -0.008 -0.007 -0.010 0.006 0.005 0.006

500 0.017 0.027 0.031 0.009 0.014 0.014 -0.006 -0.005 -0.005 0.002 0.005 0.005
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Table 1b: Coverage 95% Confidence Interval θ̂ - Circular World

ρ̂ α̂ β̂1 β̂2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.654 0.119 0.013 0.789 0.345 0.454 0.916 0.913 0.912 0.912 0.879 0.900

300 0.797 0.418 0.008 0.827 0.675 0.395 0.937 0.924 0.919 0.939 0.941 0.928

500 0.845 0.545 0.257 0.862 0.695 0.567 0.942 0.932 0.931 0.946 0.938 0.942

The bias of the estimator is relatively small and declines quickly as n increases.

However, in terms of coverage the performance of the estimator is much worse, especially

for the spatial coefficient ρ. Indeed, while in all cases coverage of ρ improves as n

increases, it is very sensitive to the value of T and rapidly declines as this becomes

larger. Tables 2a and 2b below present, respectively, bias and coverage of a 95% two-

sided confidence interval, based on the bias corrected estimator θ̃ described in Section

6.1.

Table 2a: Bias θ̃ - Circular World

ρ̃ α̃ β̃1 β̃2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 -0.011 -0.025 -0.024 0.000 -0.002 -0.004 0.007 0.009 0.007 -0.002 -0.007 -0.004

300 -0.003 -0.005 -0.007 0.002 0.000 -0.001 0.001 0.002 0.002 -0.002 -0.001 -0.002

500 -0.001 -0.002 -0.003 0.000 -0.001 -0.001 0.001 0.001 0.000 -0.002 -0.001 -0.001

Table 2b: Coverage 95% Confidence Interval θ̃ - Circular World

ρ̃ α̃ β̃1 β̃2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.953 0.927 0.877 0.914 0.889 0.912 0.917 0.931 0.937 0.938 0.935 0.946

300 0.963 0.959 0.948 0.944 0.929 0.942 0.960 0.939 0.950 0.945 0.950 0.951

500 0.950 0.966 0.964 0.939 0.931 0.936 0.945 0.958 0.956 0.950 0.955 0.954

When compared to tables 1a and 1b, bias correction produces moderate improve-

ments in the bias of the estimator, and substantial improvements in coverage. This is

particularly apparent when considering the coverage probabilities for the spatial coeffi-

cient ρ when T = 12.

7.2 Multiple Stars

In the second Monte Carlo experiment, outcomes are generated in the same way as

before, aside from the structure of the weights matrix. In particular the weights matrix

is specified to be similar to (5.1) in that it is assumed to have a block structure, except

that now within each group all cross-sectional units are connected to only a single central

unit, which reciprocates the link, and to no others. More specifically, to generate W ,

the first G cross-sectional units are assigned to group g = 1, . . . , G, after which the
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remaining n−G units are assigned to one of these G groups with probability g/G.

W =



W 1 0 . . . 0

0 W 2 . . . 0

...
...

. . .
...

0 0 . . . WG


with Wg =



0 (ng − 1)−1 . . . (ng − 1)−1

1 0 . . . 0

...
...

. . .
...

1 0 . . . 0


,

Two different values of G are considered: 5 and 25. The noteworthy feature of this

design is that the rank of the weights matrix will be equal to 2G, in which case

ψn = O
(

(T ∧ 2G)×
√
T

n

)
.

Thus, with a larger number of groups the bias of the IV-IFE estimator is expected to be

relatively large, and, conversely, the bias should be relatively small with a smaller num-

ber of groups. Tables 3a and 3b below display coverage of a 95% two-sided confidence

interval for both the uncorrected and corrected estimates when G = 5. Tables 4a and

4b display corresponding results for G = 25. Tables which present the corresponding

bias can be found in Appendix ??.

Table 3a: Coverage 95% Confidence Interval θ̂ - Multiple Stars G = 5

ρ̂ α̂ β̂1 β̂2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.902 0.843 0.853 0.908 0.884 0.916 0.950 0.938 0.964 0.949 0.954 0.947

300 0.928 0.921 0.916 0.929 0.926 0.933 0.955 0.951 0.950 0.951 0.961 0.945

500 0.939 0.939 0.929 0.929 0.949 0.939 0.941 0.937 0.962 0.937 0.956 0.952

Table 3b: Coverage 95% Confidence Interval θ̃ - Multiple Stars G = 5

ρ̂ α̂ β̂1 β̂2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.932 0.951 0.964 0.938 0.927 0.949 0.950 0.938 0.965 0.948 0.954 0.947

300 0.953 0.944 0.960 0.946 0.940 0.938 0.955 0.951 0.950 0.950 0.961 0.946

500 0.954 0.949 0.947 0.933 0.954 0.942 0.939 0.937 0.962 0.937 0.956 0.953

Table 4a: Coverage 95% Confidence Interval θ̂ - Multiple Stars G = 25

ρ̂ α̂ β̂1 β̂2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.815 0.798 0.353 0.850 0.860 0.757 0.951 0.962 0.939 0.941 0.949 0.938

300 0.918 0.892 0.698 0.889 0.920 0.812 0.947 0.952 0.943 0.954 0.959 0.956

500 0.935 0.913 0.861 0.924 0.949 0.931 0.944 0.958 0.947 0.954 0.950 0.954
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Table 4b: Coverage 95% Confidence Interval θ̃ - Multiple Stars G = 25

ρ̂ α̂ β̂1 β̂2

n \ T 6 9 12 6 9 12 6 9 12 6 9 12

100 0.956 0.951 0.962 0.915 0.924 0.953 0.950 0.950 0.940 0.944 0.954 0.952

300 0.956 0.961 0.961 0.925 0.959 0.932 0.952 0.949 0.947 0.955 0.961 0.953

500 0.948 0.965 0.960 0.937 0.952 0.945 0.946 0.956 0.953 0.953 0.952 0.954

As expected, when G = 5 the bias of the estimator is small, though nonetheless

coverage is still improved by bias correction. When G = 25 the bias is more pronounced,

with bias correction leading to significant improvements in coverage of ρ, particularly

for larger values of T .

8 Empirical Application

8.1 Economic Growth, Civil Liberties and Political Rights in the 21st

Century

In this section the IV-IFE estimator is applied to study the impact of civil liberties and

political rights on economic growth. This study is in the spirit of Acemoglu et al. (2019)

who study the long term impact of democracy on GDP per capita using, amongst other

methods, a dynamic panel model with fixed effects. The data consists of a balanced

panel containing data on 180 countries observed between the years 2001 and 2020.

The dependent variable is the log of GDP per capita measured in 2015 US dollars.14

The main explanatory variable is a dichotomous indicator of civil liberties and political

rights dit derived from the Freedom in the World Index compiled by Freedom House.

This variable encodes

dit =

0 if classified as not free,

1 if classified as free or partially free.

In order to quantify spatial dependence in outcomes, a weights matrix is generated

based on the distance between countries at their nearest point. In order to generate this,

a (equirectangular) projection of the globe is taken from the World Bank which consists

of very high resolution coordinates of international boundaries. These coordinates are

rounded to generate a lower resolution projection which describes the shape of countries

using fewer data points, based on which the great-circle distance is calculated between

every pair of coordinates using the haversine formula. For each country pair ij, let δij

denote the shortest distance between i and j, and let e denote half the distance of the

equator. Then the n×n weights matrix W is generated by setting element wij equal to

δij = 1−δij/e if δij/e < τ , and δij = 0 if δij/e ≥ τ , where τ is a prespecified threshold.15

14The data are obtained from the World Bank.
15In estimation this threshold is set to 0.1.
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Comparing the study conducted here to that of Acemoglu et al. (2019) there are a

few important differences to highlight. The first is that while Acemoglu et al. (2019)

use an unbalanced panel spanning the period 1960− 2010, the panel constructed here is

balanced and covers the period 2001− 2020. Using a more recent dataset is useful since

observations are available for most countries in the world over this period. This may

help to mitigate any possible selection issues, in the sense that wealthier, democratic

countries are disproportionately represented in the earlier years of the panel constructed

by Acemoglu et al. (2019). Also, since the primary focus of this study is to consider

spatial dependence, the omission of data for particularly influential countries may be

consequential. Second, while Acemoglu et al. (2019) do consider that there may be

spatial correlation in the data, and report additional estimation results after controlling

for a spatial lag of GDP, they do not fully explore the possibility of this as an additional

mechanism through which a transition to democracy may accrue more substantial long

term effects on GDP. Thirdly, the authors control only for individual and time effects

and not interactive effects.

8.2 Dynamic Model

To begin with a first order dynamic model is estimated, that is,

yt = αyt−1 + βdt + ηt. (8.1)

This specification allows for dynamics but is absent of a spatial component and allows

for a more direct comparison to be made with the results obtained in Acemoglu et al.

(2019). The long term impact is calculated as γ := β/(1− α) and is the main statistic

of interest. Table 1 below provides four different sets of results. The columns headed

‘FE’ provides output for the model (8.1) estimated by least squares and controlling for

individual and time effects, the column headed ‘IV-IFE V(1)’ provides estimation re-

sults from applying the IV-IFE estimator using instrument set V(1), the column headed

‘IV-IFE V(2)’ provides estimation results from applying the IV-IFE estimator using

instrument set V(2), and the column headed ‘ANRR’ provides a range of results for

the equivalent specification to (8.1) found in Acemoglu et al. (2019). The first set of

of instruments is V(1) := (d1, . . . ,dT ), that is, consists of all past, present and fu-

ture values of dt. The second set expands this to also include spatial lags of dt, i.e.

V(2) := (d1, . . . ,dT ,Wd1, . . . ,WdT ). The number of factors in estimation is selected

in the following way. First, by Proposition 1, θ0 can be consistently estimated with

knowledge only of an upper bound on the number of factors. Thus, inputting a large

value for R, consistent estimates of the coefficients can be obtained.16 Using these coef-

ficient estimates, a pure factor model can be constructed and the true number of factors

detected using the eigenvalue ratio test described in Higgins (2022). Finally, the model

16Here R = 5 is used.
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is re-estimated inputting the detected number of factors (in this case 1) to obtain the

final estimates.

Table 1: Dynamic Model

- - V(1) V(2) -

- FE IV-IFE IV-IFE ANRR

β 0.0161 0.0141 0.0124 0.0078 - 0.0097

t-stat 3.9000 2.5343 2.286

α 0.9228 0.8435 0.9335 0.938 - 0.973

t-stat 146.3841 24.7520 76.8929

γ 0.2086 0.0901 0.1865 0.1264 - 0.3558

t-stat 3.7379 2.7802 2.4492

J-stat - 0.2096 0.4032

The coefficient β is found to be similar using both the FE and IV-IFE estimators.

Though these are slightly larger than the values found in ANRR, they share the same

sign and are both significant. On the other hand the autoregressive coefficient α exhibits

more substantial differences. While the FE coefficient is found to be similar to the value

found by ANRR, as is the IV-IFE estimator which uses instrument V(2), the value found

using the IV-IFE estimator and instruments V(1) is much smaller. As a consequence,

the long run effect γ found using V(1) is also much smaller, and indeed falls outside

of the range of values found in ANRR. This difference in value can be attributed to

the fact that, ultimately, dt is a poor instrument. Firstly, dt does not have a great

deal of variation. Indeed over the course of the period 2001 − 2020, across all 180

countries in the panel (constituting some 3600 observations), only 65 changes in status

are observed. Second, as is evident from estimates of β in Table 1, dt is only quite

weakly correlated with GDP. This then leads the IV-IFE estimator using instruments

V(1) to underestimate the degree of persistence in the data. Motivated by the suspicion

that the data truly exhibit spatial dependence in outcomes, V(2) uses spatial lags of dt

as additional instruments, which leads to estimation results much closer to those found

using the FE estimator and in ANRR. The fact that augmenting the instrument set

with spatial lags of dt has a significant impact on the estimates already suggests that

the data exhibit some degree of spatial correlation motivating the results to follow for

the full dynamic spatial model.
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8.3 Dynamic Spatial Model

This section provides estimation results for a first-order dynamic spatial model

yt = ρWyt + αyt−1 + φWyt−1 + βdt + ηt.

For the IV-IFE estimator the set of instruments V(2) is used (described in the previous

subsection), which includes all values of dt and first order spatial lags Wdt. Unlike in

the dynamic model, there is now no longer a common long run effect over the cross-

section, but rather an n× n matrix of long run effects, where element ij of this matrix

captures the impact that an increase in political rights and civil liberties in country i

has on the GDP of a country j, in the long run. Two summary statistics of this matrix

are provided. The first is the direct effect defined to be

γD :=
β

n
tr
(
((1− α)In − (ρ+ φ)W )−1

)
.

This is the generalisation of the long run effect described in the previous subsection

and is the average long term effect that an increase in political rights and civil liberties

in country i has on its own GDP. Evidently, if there were no spatial spillovers and

ρ = φ = 0, then γD would collapse to equal γ. The second summary statistic is the

indirect effect defined to be

γI :=
β

n2
ι>n
(
(1− α)In − (ρ+ φ)W )−1

)
ιn − γD.

This describes the average long term effect that an increase in political rights and civil

liberties in country i has on the GDP of another country j. If there were no spatial

spillovers and ρ = φ = 0, then γI = 0.

Table 5: Dynamic Spatial Model

- FE IV-IFE IV-IFE-BC - FE IV-IFE IV-IFE-BC

β 0.0158 0.0111 0.0112 φ -0.0118 -0.0156 -0.0084

t-stat 3.8585 2.0618 2.0781 tstat -7.3287 -8.0175 -4.3520

α 0.9224 0.9347 0.9374 γD 0.2042 0.1716 0.1793

t-stat 145.5072 78.0726 78.2993 t-stat 3.7029 2.1954 2.2006

ρ 0.0125 0.0164 0.0082 γI 0.0645 0.1142 -0.0184

t-stat 6.9085 8.0257 4.0043 t-stat 0.9342 0.8839 -0.5809

J-stat - 0.1592 0.0938

Table 5 displays the estimation results for the dynamic spatial model. The column

headed ‘FE’ display estimates controlling for individual and time effects using the 2SLS

estimator described in Lee and Yu (2014). The columns headed ‘IV-IFE’ display IV-

IFE estimates without bias correction, and the columns headed ‘IV-IFE-BC’ display
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bias corrected estimates. The estimates for β and α are similar to those obtained for

the dynamic model. The spatial coefficient ρ is found to be significant and positive,

indicating that higher values of GDP per capita in neighbouring countries is associated

with a higher value of GDP per capita in that country itself. The coefficient φ is also

found to be signifiant and though of similar magnitude, it is of opposite sign to ρ.

Interestingly, the direct effect γD is found to be quite similar to the effect found for

the dynamic model in spite of the addition of the spatial regressors which have been

found to be relevant. This occurs because, although immediately the spatial dependence

positively amplifies the impact of an increase in political rights and civil liberties, this

effect is offset by a negative impact in the subsequent time period. In the long run the

positive effect through ρ and the negative effect through φ offset each other.

9 Conclusion

To conclude, this paper introduces an IV estimator for dynamic spatial models with

interactive effects that provides consistent and asymptotically unbiased estimates when

cross-sectional dimension n is large relative to the number of time period T and the

number of instruments m. However, circumstances exist where the estimator can exhibit

asymptotic bias, which largely depends on the structure of the weights matrix, and on

the set of instruments. Monte Carlo experiments suggest that bias correction is an

effective remedy to this problem, and an empirical application of the methods supports

the findings of Acemoglu et al. (2019) that increased political rights and civil liberties

within a country results in higher values of GDP per capita in the long run. The

estimation approach described in this paper applies more widely than to the dynamic

spatial model alone, therefore future work will explore the application of this method

to problems with endogenous regressors more generally.
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