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Abstract

This document contains calculations and simulations for three examples (the many
normal means problem, a dynamic logit model, and inference on the second moment
of the fixed effects in the many normal means setting). It also provides full estimation
results for the empirical application.

1 Examples

Many normal means In the classic problem of Neyman and Scott (1948) we observe

independent variables

zit ∼ N(ηi0, ϕ0).

Maximum likelihood estimates the mean parameters by the within-strata sample averages

zi := 1/m
∑m

t=1 zit and the common variance parameter by

ϕ̂ =
1

nm

n∑
i=1

m∑
t=1

(zit − zi)2.

It is well known that, in this case,

√
nm(ϕ̂− ϕ0)

L→ N(−γϕ0, 2ϕ
2
0), (E.1)
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under rectangular-array asymptotics. Here, starting from the fact that nm ϕ̂/ϕ0 ∼ χ2
n(m−1),

the exact distribution of the maximum-likelihood estimator can be derived. We find that

√
nm(ϕ̂− ϕ0) ∼ Gamma

(
−
√
nmϕ0,

n(m− 1)

2
,

2ϕ0√
nm

)
,

where Gamma(ϑ1, ϑ2, ϑ3) refers to the Gamma distribution with shape ϑ2 and scale ϑ3,

shifted by ϑ1. It is readily verified that the mean and variance of this distribution are equal

to

−
√
n

m
ϕ0, 2ϕ2

0

(
1− 1

m

)
,

respectively.

In this example, the bootstrap independently samples z∗it ∼ N(zi, ϕ̂). The associated

maximum-likelihood estimators are z∗i and

ϕ̂∗ =
1

nm

n∑
i=1

m∑
t=1

(z∗it − z∗i )2.

Conditional on the data, the latter estimator follows the same Gamma distribution as above,

only with ϕ0 replaced by ϕ̂. Noting that we can write
√
nm(ϕ̂− ϕ0) = −

√
n/mϕ0 + ε, for

a mean-zero random variable ε = OP (1), this implies that

√
nm(ϕ̂∗−ϕ̂) ∼ Gamma

(
−
(√

nmϕ0 −
√
n

m
ϕ0 + ε

)
,
n(m− 1)

2
,

2ϕ0√
nm

(
1− 1

m

)
+

2ε

nm

)
conditional on the sample. The mean and variance of this distribution are

−
√
n

m
ϕ0 +

1

m

(√
n

m
ϕ0 − ε

)
, 2ϕ2

0 +
2

m

(
ε2 +

√
m

n
ϕ0ε− 3ϕ2

0

)
+O

(
1

m2

)
which, to first order, agree with the corresponding moments of the maximum-likelihood

estimator.

The studentized maximum-likelihood estimator follows a (translated) inverse-Gamma

distribution, mirrored about the origin. Moreover,

−
√
nm

(ϕ̂− ϕ0)√
2ϕ̂2

∼ Inverse-Gamma

(
−
√
nm

2
,
n(m− 1)

2
,

√
nm

2

nm

2

)
,

where Inverse-Gamma(ϑ1, ϑ2, ϑ3) refers to the Inverse-gamma distribution with shape ϑ2

and scale ϑ3, shifted by ϑ1. This distribution is pivotal and the bootstrap replicates it
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Table E.1: Many normal means: bias, standard deviation, coverage, and size for ϕ0

BIAS STD COVERAGE SIZE

n m MLE MLE BC BB DBB SB LR LR*

10 10 -0.100 0.134 0.827 0.904 0.918 0.950 0.950 0.128 0.050

20 10 -0.100 0.095 0.763 0.903 0.922 0.950 0.950 0.193 0.050

40 10 -0.100 0.067 0.637 0.902 0.926 0.950 0.950 0.323 0.050

100 10 -0.100 0.042 0.330 0.897 0.927 0.950 0.950 0.642 0.050

exactly. Thus, at least in this example, the studentized bootstrap yields confidence intervals

whose probability of covering ϕ0 can be controlled exactly.

A first-order correction to ϕ̂ based on a plug-in estimator of its asymptotic bias is

ϕ̃ := ϕ̂+
ϕ̂

m
.

It is interesting to compare the performance of confidence intervals for ϕ0 based on bias

correction with those obtained via the bootstrap. The bias-correction approach uses the

large-sample approximation

√
nm

(ϕ̃− ϕ0)√
2ϕ̂2

L→ N(0, 1).

Its coverage accuracy can be evaluated for any given sample size from the observation that

−
√
nm

(ϕ̃− ϕ0)√
2ϕ̂2

∼ Inverse-Gamma

(
−
√
nm

2

(
1 +

1

m

)
,
n(m− 1)

2
,

√
nm

2

nm

2

)
.

Observe that this distribution coincides with that of the studentized maximum-likelihood

estimator up to the location parameter, the current distribution being located closer to zero.

We further remark that bootstrapping the bias-corrected estimator would yield exactly the

same confidence interval as the one obtained by bootstrapping the uncorrected estimator.

In that sense, there is no gain to be had from implementing any bias correction in this

example.

Table E.1 contains the bias and standard deviation of the maximum-likelihood estimator

for ϕ0 = 1 and gives coverage rates of two-sided 95% confidence intervals for ϕ0. The rates
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are invariant to the value of ϕ0. The bias is not small relative to the standard deviation.

Consequently, confidence intervals constructed by means of the naive normal approximation

to maximum likelihood (MLE) perform poorly but bootstrapping the maximum-likelihood

estimator, both using the basic bootstrap (BB) and the studentized bootstrap (SB), yields

reliable inference. Here, the latter gives exact coverage. Iterating the basic bootstrap

(DBB) also yields exact coverage. Confidence intervals based on bias correcting (BC) the

maximum-likelihood estimator improve considerably on MLE but still undercover by about

5 percentage points in all designs considered.

Next, consider testing the null hypothesis that the variance parameter is equal to ϕ0.

The likelihood-ratio statistic is

nm ϕ̂/ϕ0 − nm log(nm ϕ̂/ϕ0)− nm+ nm log(nm)

and depends on the data only through nm ϕ̂/ϕ0. The latter has a pivotal distribution and,

hence, so does the test statistic. A small calculation reveals that its limit distribution is

a non-central χ2
1-distribution with non-centrality parameter γ2/2. Consequently, while a

decision rule based on critical values from the χ2
1-distribution will not yield size control,

using the quantiles of the bootstrap distribution will. Furthermore, in this example size is

controlled exact in finite samples. The size distortion of the likelihood-ratio (LR) test when

using the .95 quantile of the χ2
1-distribution and the improvement when working instead

with bootstrap critical values (LR∗) is illustrated in Table E.1.

Dynamic logit For our next example we consider the Markov process

yit =

 1 if ηi0 + ϕ0yit−1 > εit

0 if not
,

where the εit are independent and identically distributed logistic random variables, i.e.,

P(εit ≤ a) = (1 + e−a)−1 =: F (a). The initial conditions, yi0, are observed and held fixed

throughout.

The maximum-likelihood estimator is not available in closed form. Nonetheless, the

log-likelihood function is globally concave and numerical optimization is straightforward,
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exploiting the sparsity of the Hessian matrix (see, e.g., Chamberlain 1980). Further, an

excellent starting value for the bootstrap maximum-likelihood estimator comes in the form

of the maximum-likelihood estimator based on the original data, as the latter is used to

generate the bootstrap samples. Given ϕ̂ and η̂1, . . . , η̂n we generate bootstrap samples

for the dynamic logit model by recursively drawing y∗it from a Bernoulli distribution with

success probability F (η̂i + ϕ̂y∗it−1). Each bootstrap iteration starts at the initial condition

yi0.

The exact distribution of ϕ̂ is not known so we resort to simulations. We draw yi0 with

P(yi0 = 1) =
F (ηi0)

1− F (ηi0 + ϕ0) + F (ηi0)
,

set ηi0 = 0 for all the strata, and consider autoregressive parameters ϕ0 ∈ {1/2, 1, 3/2}.

Table E.2 provides the bias and standard deviation of the maximum-likelihood estimator,

the coverage rates and average length of various (two-sided) 95% confidence intervals for

ϕ0, and the size of the likelihood-ratio test with a (theoretical) size of 5% for different

choices of critical value.

We report coverage and length for confidence intervals based on (the naive normal

approximation to) the maximum-likelihood estimator (MLE), the basic bootstrap (BB)

and studentized bootstrap (SB) and their iterated version (DBB and DSB, respectively),

as well as on two procedures that adjust the maximum-likelihood estimator for its bias.

The first of these adjustments (BC1) is the analytical correction of Hahn and Kuersteiner

(2011). The second adjustment (BC2) is due to Fernández-Val (2009) and exploits the

model structure to implement a refined correction that replaces certain sample averages by

expected quantities. Both these approaches require a bandwidth choice. We report results

for a bandwidth equal to one, which we found was the choice that performed best. For the

likelihood-ratio test we report size for the decision rule based on the .95 quantile of the

χ2
1-distribution (LR), the .95 quantile of the bootstrap distribution (LR*) and quantiles set

according to the double bootstrap (LR**). All (single) bootstrap results are based on the

use of 999 bootstrap replications. For the double bootstrap, we use 999 replications in the

outer iteration and 316 replications in the inner iteration (following Booth and Hall 1994).
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The naive normal approximation to the sampling distribution of the maximum-likelihood

estimator again yields unreliable inference in this problem. Bias correction yields a large

improvement in coverage rates and comes with only minor increases in the length of the

confidence intervals (which is informative about efficiency). Confidence intervals based on

the correction underlying BC2 tend to give better coverage than those based on BC1, with

the difference sometimes being considerable (up to 30 percentage points in the table). This

highlights the sensitivity of bias-corrected inference to how the bias is being estimated.

The performance of both BC1 and BC2 also deteriorates substantially as the value of ϕ0

increases, highlighting the sensitivity of bias estimators to relatively minor design changes.

Both these issues are not accounted for by first-order theory. Confidence interval based

on the bootstrap, both in its basic and in its studentized form, are competitive with those

based on bias correction and their performance is stable across different values of ϕ0. BB

does at least as well as BC2 in terms of coverage, and its iterated version DBB gives very

similar coverage. SB and SDB yield somewhat shorter confidence intervals and, especially

in the shortest panels, iterating gives improved coverage. For the likelihood-ratio test we

observe a similar pattern as for the studentized bootstrap. LR shows large over-rejection

rates while LR* and, even more so, LR** yield tests with size close to nominal size.

Many normal means (cont’d) In our third example we reconsider the setup of Neyman

and Scott (1948) but change the parameter of interest to

∆ = lim
n→∞

1

n

n∑
i=1

η2i0,

the second moment of the fixed effects. The plug-in estimator is 1/n
∑n

i=1 z
2
i . Using the fact

that zi ∼ N(ηi0, ϕ0/m) by normality of the data it is easy to verify that the plug-in bias due

to the estimation of the fixed effects is ϕ0/m, while the estimator’s sampling variance equals

2ϕ0

nm

(
2

∑n
i=1 η

2
i0

n
+
ϕ0

m

)
.

The second component in the variance expression is of smaller order and asymptotically

negligible.
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Table E.3: Many normal means: bias, standard deviation and coverage and length of

confidence interval for limn→∞ 1/n
∑n

i=1 η
2
i0

BIAS STD COVERAGE LENGTH

n m MLE MLE BC BB DBB SB DSB MLE BC BB DBB SB DSB

50 10 0.100 0.055 0.550 0.953 0.954 0.952 0.917 0.945 0.232 0.232 0.232 0.231 0.210 0.234

50 20 0.050 0.038 0.702 0.958 0.942 0.934 0.915 0.929 0.156 0.156 0.156 0.153 0.145 0.153

50 50 0.020 0.023 0.782 0.936 0.939 0.932 0.916 0.929 0.095 0.095 0.095 0.094 0.091 0.094

100 10 0.100 0.039 0.256 0.951 0.956 0.962 0.922 0.965 0.163 0.163 0.163 0.165 0.147 0.178

100 20 0.050 0.027 0.517 0.955 0.947 0.942 0.918 0.937 0.110 0.110 0.110 0.109 0.101 0.110

100 50 0.020 0.017 0.702 0.941 0.949 0.945 0.935 0.943 0.067 0.067 0.067 0.066 0.064 0.066

The bootstrap again independently samples z∗it ∼ N(z̄i, ϕ̂) and subsequently constructs

the estimator 1/n
∑n

i=1 z
∗
i
2. The exact distribution of the estimator is a complicated mixture

and so we once more resort to simulations to evaluate the performance of the bootstrap.

In our simulations we set ηi0 = i/n so that, in large samples, the distribution of the fixed

effects is uniform on [0, 1]; hence, ∆ = 1/3. Data were generated with ϕ0 = 1.

We report results for several choices of (n,m) in Table E.3. The bootstrap confidence

intervals are again found to yield a large improvement in coverage rates relative to the

ones based on the naive plug-in approach and are competitive with those based on bias

correction. Again the basic bootstrap does better than the studentized version and has

actual coverage very close to theoretical coverage for all designs. Iterating the former does

little in terms of coverage rates. Iterating the latter gives further improvement, especially

in the shorter panels. The average length of the confidence intervals is very similar across

the different methods.

2 Empirical illustration

For our empirical example we use data from the Panel Study of Income Dynamics (PSID)

to look at determinants of labor-force participation decisions of married woman. We follow

Hyslop (1999) and specify the participation decision as a dynamic probit model with unit-

8



specific intercepts. We included the number of children of at most two years of age (#

children 0–2), between 3 and 5 years of age (# children 3–5), and between 6 and 17 years

of age (# children 6–17), as well as the log of the husband’s earnings (log husband income;

expressed in thousands of 1995 U.S. dollars), and a quadratic function of age. Carro (2007),

Fernández-Val (2009), and Dhaene and Jochmans (2015) have previously estimated the

same specification using various bias-corrected estimators. To ensure comparability with

their results we use the same data (Fernández-Val, 2022), which concern the period 1979–

1988. The sample consists of 1461 women aged between 18 and 60 in 1985 who, throughout

the sampling period, were married to men who were in the active labor force the whole

time. During the sampling period, 664 of these individuals changed participation status at

least once. The time series for the others can be fitted perfectly by setting their fixed effect

to either −∞ (if they never worked) or +∞ (if they always worked). These observations

do not carry any information about the common parameters and do not contribute to the

(concentrated) likelihood function.

Table E.4 contains points estimates, standard errors, and 95% confidence intervals for

the coefficients of the probit model. As before, we provide results for maximum likelihood,

the bias-corrected estimators of Hahn and Kuersteiner (2011) and Fernández-Val (2009),

the basic bootstrap and the studentized bootstrap, and the iterated version of the latter

two. For maximum likelihood and for the two bias-corrected estimators the standard errors

and confidence intervals are based on the conventional normal approximation, using the

Hessian matrix evaluated at the point estimates to estimate the Fisher information. For

the bootstrap we provide a single point estimate, obtained by subtracting the median of

the bootstrap distribution of ϕ̂∗ − ϕ̂ from ϕ̂, and a single standard error, calculated as the

standard deviation of the bootstrap distribution of ϕ̂∗ − ϕ̂ (without winsorization). Bias

correction using the mean rather than the median (not reported) yielded very similar point

estimates.

The difference between standard maximum likelihood and the other approaches is most

pronounced in the coefficients that capture state dependence and the impact of having

young children. Adjusting the point estimates for bias leads to an upward revision in each

9



Table E.4: Female labor-force participation

MLE BC1 BC2 BB SB

Lagged participation 0.756 0.992 1.031 1.163

(0.043) (0.043) (0.043) (0.045)

[0.672 0.840] [0.908 1.075] [0.948 1.115] [1.077 1.250] [1.053 1.210]

[1.105 1.262] [1.105 1.279]

# Children 0-2 -0.554 -0.477 -0.436 -0.365

(0.057) (0.057) (0.057) (0.074)

[-0.667 -0.442] [-0.590 -0.365] [-0.548 -0.324] [-0.507 -0.219] [-0.511 -0.263]

[-0.487 -0.219] [-0.489 -0.278]

# Children 3-5 -0.279 -0.213 -0.193 -0.140

(0.053) (0.053) (0.053) (0.068)

[-0.384 -0.175] [-0.317 -0.109] [-0.297 -0.089] [-0.274 -0.006] [-0.274 -0.035]

[-0.247 -0.006] [ -0.249 -0.051]

# Children 6-17 -0.075 -0.056 -0.050 -0.036

(0.042) (0.042) (0.042) (0.055)

[-0.158 0.008] [-0.140 0.027] [-0.134 0.033] [-0.144 0.074] [-0.138 0.059]

[-0.113 0.039] [-0.115 0.042]

Log husband income -0.246 -0.232 -0.209 -0.185

(0.055) (0.055) (0.055) (0.069)

[-0.354 -0.139] [-0.339 -0.124] [-0.317 -0.101] [-0.317 -0.049] [-0.312 -0.075]

[-0.292 -0.095] [-0.293 -0.094]

Age 2.050 1.844 1.616 1.407

(0.387) (0.387) (0.387) (0.500)

[ 1.292 2.809] [ 1.086 2.602] [ 0.858 2.374] [ 0.424 2.370] [ 0.587 2.346]

[0.805 2.147] [0.768 2.159]

Age squared -0.250 -0.224 -0.196 -0.169

(0.051) (0.051) (0.051) (0.066)

[-0.351 -0.149] [-0.325 -0.123] [-0.297 -0.095] [-0.296 -0.038] [-0.293 -0.060]

[-0.268 -0.038] [-0.269 -0.083]
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of these coefficients for all methods. This revision is especially large (relative to its standard

error) for the coefficient on lagged participation. Its maximum-likelihood estimate is well

outside any of the theoretically-justified confidence intervals. The bootstrap bias correction

is somewhat larger than that of the two analytical corrections

The bootstrap-based confidence intervals are located somewhat further away from the

maximum-likelihood point estimates, as are those obtained by centering a conventional

confidence interval around a bias-corrected estimator. Confidence intervals based on the

studentized bootstrap are somewhat shorter and more asymmetric than those based on the

basic bootstrap. Iterating the bootstrap leads to some revision of the confidence intervals,

especially for the studentized version of the bootstrap. The double-bootstrap confidence

intervals based on the basic version of the bootstrap and the studentized bootstrap are very

similar, and typically closer to those of the basic bootstrap than to those of the studentized

bootstrap that had been obtained prior to iterating. All these observations are in line with

what has been observed in the simulation results for the dynamic logit model reported on

above.
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