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Abstract

This paper studies the estimation of a linear panel data model with interactive

fixed effects where T is small relative to n. This encompasses the situation where

T is fixed and n→∞, and also where both n, T →∞ but T/n→ 0. A transforma-

tion is introduced which reduces the model to a lower dimension, and, in doing so,

relives the model of incidental parameters in the cross-section. The consequences

of this transformation turn out to be remarkably far-reaching, and it is shown that

simply transforming the model and then applying the least squares interactive fixed

effects (LS-IFE) estimator of Bai (2009) will deliver estimates that are consistent,

unbiased, and asymptotically normal when T is small relative to n, even where

the error exhibits cross-sectional or temporal dependence and/or heteroskedastic-

ity. This contrasts sharply with the usual case where the LS-IFE estimator is, in

general, inconsistent with T fixed, and suffers from asymptotic bias which impedes

inference when n, T →∞ but T/n→ 0.
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1 Introduction

1.1 Overview

This paper contributes to the extensive literature on linear panel data models with in-

teractive effects. These models have proven to be very popular since, in many situations,

the existence of such structures is well motivated; for example, arising due to unobserved

heterogeneity across individuals, or exposure to common shocks. The model studied in

this paper assumes that, in a panel with entries indexed i = 1, . . . , n and t = 1, . . . , T ,

outcomes are generated according to

yt = αyt−1 +Xtβ + Λf t + εt, (1.1)

where yt and εt are n × 1 vectors of outcomes and error terms, respectively, Xt is an

n × K matrix of exogenous (with respect to ε) covariates, Λ is an n × R matrix of

time-invariant factor loadings, and f t is an R × 1 vector of time-varying factors.1 It is

assumed that both the outcomes and the covariates are observed by the econometrician,

while the factors, the loadings, and the error terms are not. The parameter of interest in

this model is the (K+1)×1 vector θ := (α,β>)> comprised of the scalar autoregressive

parameter α and the K × 1 vector β.

This model can be seen as a generalisation of familiar models of additive effects, such

as individual, time or group effects. For example, individual and time effects nest as a

special case of (1.1) in which

Λ =


λ1 1
...

...

λn 1

 , f t =

(
1

ft

)
,

that is, where a vector of heterogeneous loadings is interacted with a unit factor, and

where a vector of unit loadings is interacted with a time-varying factor. More generally,

however, with interactive effects, no restrictions are placed on the factors or the load-

ings to be multiples of unit vectors, or otherwise, and both are permitted to be fully

heterogeneous.

The main obstacle to consistent estimation of θ arises in situations where the un-

observed interactive effects are somehow correlated with covariates in the model. In

this event, an endogeneity problem arises, and, as a result, naive estimation approaches

will typically produce inconsistent estimates. One possible remedy to this is to treat

the components of the factor term as additional parameters to estimate, known as the

fixed effects approach. Doing this has the benefit of allowing for arbitrary correlation

between the covariates, the factors and the loadings, in contrast to the main alternative,

1For ease of presentation a first order autoregressive process is assumed throughout this paper. It is
straightforward to extend the analysis and the results to cover higher order autoregressive processes.
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random effects. However, treating both the factors and loadings as fixed effects gives

rise to incidental parameters in both dimensions of the panel, which, in turn, generates

complications for the estimation of the parameter of interest θ. These complications

arise as a consequence of the incidental parameter problem (Neyman and Scott, 1948)

which describes the situation where the presence of high-dimensional nuisance param-

eters aversely impacts the estimation of other parameters in the model. In long panels

this problem can, to some extent, be overcome, and in particular it has been shown

that the least squares estimator that treats both the factors and the loadings as fixed

effects is consistent as both n and T → ∞, though it typically suffers form asymptotic

bias (Bai, 2009; Moon and Weidner, 2017). It is, however, in short panels that the

incidental parameter problem is felt most acutely, and with T fixed the least squares in-

teractive fixed effects (LS-IFE) estimator is generally inconsistent outside of exceptional

circumstances.

This paper proposes a simple remedy to the problem by introducing a transformation

of the model, which, after having been applied, enables the LS-IFE estimator to produce

consistent estimates with T fixed. In contrast to typical approaches, this transformation

is not designed to purge the incidental parameters from the model entirely. Instead, the

aim is to reduce the dimension of the model, and, in doing so, relieve it of incidental

parameters in the cross-section. The most appealing aspect of this transformation is its

simplicity, since it is constructed directly from the data and applied to the model prior

to estimation without introducing any additional parameters. And yet, despite this

simplicity, the transformation is shown to have remarkably far-reaching consequences,

and, in the main result of this paper, it is found that that simply transforming the

model and then applying the LS-IFE estimator will produce not only consistent, but

also asymptotically unbiased estimates with T fixed, irrespective of the possible inclusion

of dynamic regressors, and the presence of cross-sectional and serial dependence and/or

heteroskedasticity in the error. The precise mechanisms through which this is achieved

are studied in close detail which reveals that, under certain conditions, these properties

also carry over to the large n, large T setting when the ratio T/n → 0. These results

contrast sharply with the usual case where, as well as being generally inconsistent with

T fixed, the LS-IFE estimator suffers from asymptotic bias which impedes inference

when n, T →∞ but T/n→ 0.

1.2 Related Literature

Given that the LS-IFE estimator is generally inapplicable to short panels, and that

such datasets have been historically, and still remain today, very common in economics,

a great deal of research - both theoretical and applied - has focused on alternative

estimation strategies. Yet unlike in the large panels, where little if anything need be

assumed about the relationship between the factors, the loadings and the covariates,

many, if not most of the approaches designed for short panels rely on the possibility
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of correlation existing between these and indeed lean into this possibility as a means

to derive alternative estimators.2 In this line of research, approaches may broadly be

placed into one of two groups: those that impose a specific functional form for the

relationship between the factor term and covariates, and those that do not.

The first group consists of common correlated effects approaches, which originate

from the seminal paper of Pesaran (2006). At the core of this approach is the assumption

that at least some model covariates also admit a factor decomposition, such that the

factors can be instrumented by taking cross-sectional averages of these covariates. In

such cases, these instruments can be levered to purge the factor term, and, ultimately,

give rise to estimators that are often consistent with T fixed, as well as where both

n and T diverge. The properties of this approach have been extensively studied: a

likelihood setting (Bai and Li, 2014), with dynamics (Everaert and Groote, 2016), with

an unknown number of factors (Westerlund and Urbain, 2015). Other contributions in

this line of research include Westerlund (2020), Vos and Everaert (2021) and Juodis and

Sarafidis (2022b). Though these methods are often easy to implement, the imposition

of a particular relationship between the factors and the covariates can be restrictive,

and whether or not this is reasonable assumption is largely a matter of context. This

leads naturally to the second group of methods that seek to exploit possible correlation

between observed covariates and the factor structure, without imposing any particular

functional form for this relationship.

This second group might simply be termed correlated effects approaches and includes

quasi-difference approaches (Holtz-Eakin et al., 1988; Ahn et al., 2001, 2013), the instru-

mental variables estimators of Robertson and Sarafidis (2015), and the hybrid approach

of Juodis and Sarafidis (2022a). Either directly or indirectly, these approaches also

hinge on the existence of correlation between the factor term and observed covariates,

which can be exploited to derive moment conditions that then can be used to produce

estimators that are fixed T -consistent. The present paper is closely related to this line of

research, though takes a different approach centred around the LS-IFE estimator. While

subsequent sections show that when applied to the transformed model, the LS-IFE esti-

mator is, in some instances, equivalent to the quasi-difference and instrumental variables

approaches, implementing those estimators comes with varying degrees of complexity,

with it being necessary to directly estimate multiple nuisance parameters alongside the

parameter of interest θ, and in some cases to do so from a set of highly non-linear mo-

ment conditions. On the other hand, this paper shows that estimation can sometimes

be reduced to the optimisation of a univariate objective function which depends only

on the parameters of interest, including when the model is dynamic. Bridging the gap

between the LS-IFE estimator and method of moments-based approaches is also useful

since at present little is known about the properties of the latter approaches outside

of the fixed T setting including whether or not, and in which instances, they may still

2An exception to this is Hsiao et al. (2021).
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produce consistent and asymptotically unbiased estimates.3

Outline: Section 2 sets out the estimation approach, introducing the transformation

and discusses the mechanics of the LS-IFE estimator. Section 3 establishes consistency,

under quite general conditions, and draws a comparison with existing results. The

asymptotic distribution of the estimator is derived in Section 4 culminating in Theorem

1, the main result of this paper. This is followed by a discussion of the large n, large

T properties of the estimator in Section 5. Some additional considerations are collected

in Section 6 including an alternative interpretation of the estimator, and a method

to detect the correct number of factors. Monte Carlo simulations follow in Section 7.

Section 8 concludes. Additional discussion and results, as well as proofs, can be found

in the appendices.

Notation: Throughout the paper, all vectors and matrices are real unless stated

otherwise. For an n×1 vector a with elements ai, ||a||1 :=
∑n

i=1 |ai|, ||a||2 :=
√∑n

i=1 a
2
i ,

||a||∞ := max1≤i≤n |ai|. Let A be an n × m matrix with elements Aij . When m =

n, and the eigenvalues of A are real, they are denoted µmin(A) := µn(A) ≤ . . . ≤
µ1(A) =: µmax(A). The following matrix norms are those induced by their vector

counterparts: ||A||1 := max1≤j≤m
∑n

i=1 |Aij | which is the maximum absolute column

sum of A, ||A||2 :=
√
µmax(A>A), and ||A||∞ := max1≤i≤n

∑m
j=1 |Aij | which is the

maximum absolute row sum of A. The Frobenius norm of A is denoted ||A||F :=√
tr(A>A). The notation ||A||max is used to denote max1≤i,j≤n |Aij |. Let PA :=

A(A>A)+A> and MA := In − PA, where In is the n × n identity matrix and +

denotes the Moore-Penrose generalised inverse. An n × 1 vector of ones is denoted ιn,

an n× 1 vector of zeros is denoted 0n, and an n×m matrix of zeros is denoted 0n×m.

For a matrix A which potentially has an increasing dimension, Op(1) is used to indicate

that ||A||2 = Op(1) and, similarly, Op(1) signifies that ||A||2 = Op(1). Throughout,

c is used to denote some arbitrary positive constant. The operation vec(·) applied to

an n × m matrix A creates an nm × 1 vector vec(A) by stacking the columns of A.

The operation diag(B) applied to an n× n matrix B creates an n× n diagonal matrix

diag(B) which contains the diagonal elements of B along its diagonal. The shorthand

diagv(B) is used to indicate diag(B)ιn and off(B) := B − diag(B).

2 Estimation Approach

Treating both the factors and the loadings as additional (nuisance) parameters in the

model, the LS-IFE estimator of (1.1) is obtained as the set of parameter values (θ,Λ,F )

which minimise the sum of squared residuals. In seminal work, Bai (2009) studies the

properties of this estimator and shows that with, strictly exogenous covariates, the

LS-IFE estimator delivers consistent estimates of regression slope coefficients, and of

3This paper also closely related to the influential work of Balestra and Nerlove (1966), Nickell (1981),
and Chamberlain and Moreira (2009).
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rotational counterparts to the factors and the loadings, where the number of factors is

known, and both n and T diverge. Further results have been provided by Moon and

Weidner (2015, 2017) who demonstrate that the estimator remains consistent with the

number of factors unknown, but not underestimated, and also with the possible inclu-

sion of predetermined regressors, including lagged outcomes. These authors establish

the asymptotic properties of the LS-IFE estimator and, in particular, document asymp-

totic biases that arise in the presence of cross-sectional and serial dependence and/or

heteroskedasticity, and due to inclusion of predetermined regressors. These biases origi-

nate from the incidental parameter problem and ultimately cause the LS-IFE estimator

to be inconsistent when T is fixed. Yet, as is shown subsequently, where the covariates

are strictly exogenous, by first transforming the model, the LS-IFE estimator can be

used to produce estimates that are consistent and asymptotically unbiased when T is

small relative to n.

2.1 Transformation of the Model

It is useful to begin by re-writing the model in matrix form. Let the n×T matrix Y :=

(y1, . . . ,yT ), Y L := (y0, . . . ,yT−1), Xk be the n× T matrix containing observations of

the k-th covariate, and the T × R matrix F := (f1, . . . ,fT )>. With this notation, the

model can be written more succinctly as

Y = αY L +
K∑
k=1

βkXk + ΛF> + ε

=:
K+1∑
κ=1

θκZκ + ΛF> + ε, (2.1)

where Z1 := Y L and Zκ := Xκ−1 for κ = 2, . . . ,K+ 1. Now, define the n×TK matrix

X := (X1, . . . ,XK) which is assumed to have full column rank.4 Consider the following

group of transformations G, where each element in this group is a bijective mapping

from the sample space to itself:

G := {Q ∈ O(n) : QX = X}, (2.2)

with O(n) being the group of n×n orthogonal matrices. This group G contains orthog-

onal transformations that preserve X. Take some Q ∈ G. This can be partitioned as

Q =: (QX,QX⊥), where QX is an n× TK matrix with orthonormal columns such that

Q>XQX = ITK and QXQ
>
X = PX, and, similarly, QX⊥ is an n× (n− TK) matrix with

orthonormal columns such that Q>
X⊥
QX⊥ = I(n−TK) and QX⊥Q

>
X⊥

= MX. Simply

put, the matrix QX projects into the TK-dimensional space spanned by the columns of

the matrix X, while QX⊥ , on the other hand, projects into the space orthogonal to this.

4Many of the results in this paper will carry over naturally to the small n, large T setting by
interchanging n and T .
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A simple way to construct QX is as X(X>X)−
1
2 , and, with this in hand, the following

transformed variables can be defined:

Ỹ := Q>XY ,

Z̃κ := Q>XZκ,

Λ̃ := Q>XΛ,

ε̃ := Q>Xε,

in which case premultiplying (2.1) by Q>X yields the transformed model

Ỹ =
K+1∑
κ=1

θκZ̃κ + Λ̃F> + ε̃. (2.3)

Looking at (2.3) there are three significant consequences of transforming the model

through QX that need to be highlighted. First, the resultant matrices Ỹ , Z̃k and Λ̃F>

are of dimension TK × T , since the entirety of the model has been transformed by

QX and projected into the TK-dimensional subspace spanned by the columns of the

covariates. Hence, the dimension of the transformed factor term Λ̃F> will no longer

depend on n, and the model is relived of incidental parameters as n → ∞.5 Second,

the transformation leads to no loss of information in the exogenous covariates since,

by construction, transforming the model through QX preserves the column space of

X. Thirdly, since the covariates used in the construction of QX are strictly exogenous,

under quite general conditions, including broad cross-sectional and serial dependence,

the transformation serves to reduce the order of the error term which, ultimately, is key

to estimating (2.3) using the LS-IFE estimator.6

2.2 Principal Components

The underlying mechanics of the LS-IFE estimator are most easily understood with

the intuition that, given the factors and the loadings, the coefficients can be estimated

by a linear regression, and, similarly, given θ, estimating the factors and loadings is a

standard principal components problem. Where T is small relative to n, it is the latter

step that proves to be challenging; in particular estimating the n-dimensional factor

loadings. For this reason it is useful to consider the factor term in isolation in order to

demonstrate the key differences that lie between estimation of the original model, and

5Reducing the dimension of the factor term may relieve the model of incidental parameters in the
cross-section, but the effect of these parameters does not disappear entirely. Their effect is still present
through Λ̃, the part of the factor loadings that remains, which manifests itself as an additional incidental
parameter in the time dimension; see Section 5.

6This paper focuses on the case where, with the exception of lagged outcomes, the regressors are
strictly exogenous, as in Bai (2009) and Moon and Weidner (2015). If instead some of the covariates
Xk are endogenous but valid instruments for these are available, then those instruments can substitute
for Xk in the construction of X.
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of its transformed counterpart.

Assume that θ is observed and define Ẏ := Y −
∑K+1

κ=1 θκZκ = ΛF> + ε which has

a pure factor structure. Let Λ̌ and F̌ be n×R and T ×R matrices, respectively, which

satisfy Λ̌F̌
>

= ΛF>, 1
nΛ̌
>

Λ̌ = IR and F̌
>
F̌ being diagonal.7 Consider the problem

of trying to estimate Λ̌ from the variance of Ẏ . With suitable conditions on the errors,

the factors, and the loadings, as n→∞,

1

nT
Ẏ Ẏ

>
Λ̌ =

1

nT
Λ̌F̌

>
F̌ +

1

nT
εε>Λ̌ + Op (1) . (2.4)

Given that 1
nΛ̌
>

Λ̌ = IR and F̌
>
F̌ is diagonal, then, without the term 1

nT εε
>Λ̌, Λ̌

would be an eigenvector of 1
nT Ẏ Ẏ

>
asymptotically. Where both n and T are large,

several authors have shown that, in spite of this distortionary term, estimating Λ̌ in the

manner above is still possible in certain circumstances. For example, under the condition

||ε||2 = Op(
√

max{n, T}) employed in Moon and Weidner (2015), dependence in the

error term is sufficiently limited that 1
nT εε

>Λ̌ = Op (1) as n, T → ∞. Alternatively,

where 1
nT εε

> p−→ Σε, it may be possible to estimate Σε, and then Λ̌ as an eigenvector of
1
nT Ẏ Ẏ

>−Σε. Nonetheless, in either case it is only in the most exceptional circumstances

that the distortions caused by 1
nT εε

>Λ̌ do not affect the estimation of the parameter θ,

and, moreover, neither case generally applies to the situation when T is small relative

to n.

Consider, on the other hand, the transformed model. Let ˇ̃Λ denote an analogue of

Λ̌. With 1
nT ||ε̃F Λ̃

> ˇ̃Λ||2 = Op (1), one arrives at a similar expression to (2.4),

1

nT
˙̃Y ˙̃Y

> ˇ̃Λ =
1

nT
ˇ̃ΛF̌
>
F̌ +

1

nT
ε̃ε̃> ˇ̃Λ + Op (1) . (2.5)

Yet now, since the covariates used to construct QX are strictly exogenous, under quite

general conditions 1
nT ||ε̃ε̃

>||2 = 1
nT ||ε

>PXε||2 = Op(1), even with T fixed. As a conse-

quence, asymptotically, ˇ̃Λ will be an eigenvector of 1
nT

˙̃Y ˙̃Y
>

and thus it is possible to

estimate the space spanned by Λ̃ with fixed T , where this was not possible for Λ. This,

heuristically, is why applying the LS-IFE estimator to the transformed model is able to

control for Λ̃ and to deliver consistent estimates of θ when T is small relative to n.

7It is straightforward to see that such matrices exist. For example, by the singular value decomposi-
tion, decompose ΛF> = USV >. Let Λ̌ be the R columns of

√
nU associated with the nonzero singular

values and F̌
>

be the corresponding R rows of SV >/
√
n. As the columns of U and V are orthogonal,

and S is diagonal, it follows that Λ̌
>

Λ̌/n = IR, F̌
>
F̌ is diagonal and Λ̌F̌

>
= ΛF>.
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2.3 Objective Function

The transformed model (2.3) can be estimated by minimising the following least squares

objective function

Q(θ, Λ̃,F ) :=
1

nT
tr

(Ỹ − K+1∑
κ=1

θκZ̃κ − Λ̃F>

)>(
Ỹ −

K+1∑
κ=1

θκZ̃κ − Λ̃F>

) .8 (2.6)

Both the factors and the transformed loadings can be concentrated out of (2.6), in which

case one arrives at an objective function involving θ alone,

Q(θ) :=
1

nT

T∑
r=R+1

µr

(Ỹ − K+1∑
κ=1

θκZ̃κ

)>(
Ỹ −

K+1∑
κ=1

θκZ̃κ

) , (2.7)

that is, the profile objective function now involves the sum of the (T − R) smallest

eigenvalues of the right hand-side matrix.9 Using this, the estimator θ̂ can then be

defined as

θ̂ := arg min
θ∈Θ

Q(θ). (2.8)

3 Consistency

Throughout the following, both Λ and F are treated as fixed parameters in estimation

and the superscript 0 is now introduced to distinguish true parameter values. Moreover,

let C denote σ(X1, . . . ,XK), that is, the sigma algebra generated by the exogenous

covariates. The following assumptions are made.

Assumption MD (Model). .

(i) The parameter vector θ0 lies in the interior of Θ, where Θ is a compact subset of

RK+1 in which |α| < 1.

(ii) The elements of the matrices X1, . . . ,XK , Λ0 and F 0 have uniformly bounded

fourth moments.

(iii) Let ΣnT := E[vec(ε)vec(ε)>|C]. Then ||ΣnT ||1 ≤ c uniformly over n and T .

Assumption MD(i) assumes that the dynamic process is stationary, which allows yt

to be expanded as an infinite series by recursive substitution.10 Assumption MD(ii)

imposes standard conditions on the moments of the covariates, the factors, and the

8When estimating the original model, the least squares objective function can be interpreted as
the negative of a quasi-likelihood function that uses the standard normal distribution. The objective
function (2.6) can then be interpreted as a marginal quasi-likelihood which uses only a part of this.

9See equation (3.3) in Moon and Weidner (2015) for details.
10Stationarity is imposed to also allow for the possibility that T grows with n in subsequent analysis.

In a purely fixed T setting this can be dispensed with.
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loadings. Assumption MD(iii) serves to limit the degree of dependence between the

errors and the covariates. It still allows for heteroskedasticity in both dimensions of

the panel, as well as quite generous serial and cross-sectional dependence in the errors.

It is also weaker than the assumption that some or all of the covariates, the loadings

and the errors are independently (and sometimes also identically) distributed over i, as

is frequently assumed in the literature on short panels with interactive effects (see, for

example, Pesaran (2006), Ahn et al. (2013) and Robertson and Sarafidis (2015)). In aid

of the following assumption let δ · Z̃ :=
∑K+1

κ=1 δkZ̃κ.

Assumption CS (Consistency). .

(i) R ≥ R0 := rank(Λ̃
0
F 0>).

(ii) minδ∈RK+1:||δ||2=1

∑T
r=R+R0+1 µr(

1
nT (δ · Z̃)>(δ · Z̃)) ≥ b > 0, w.p.a.1.

Assumption CS(i) allows for the true number of factors R0 to be unknown as long

as the number of factors used in estimation R is no less than R0. Notice also that this

condition concerns the rank of Λ̃
0
F 0> and not of Λ0F 0> , that is, R0 is the number of

factors correlated with the covariates. Assumption CS(ii) is a multicollinearity condition

and requires there to remain sufficient amount of variation in the regressors after having

been projected orthogonal to arbitrary R× T factors and R0 × TK loadings.

Proposition 1 (Consistency – General). Under Assumptions MD and CS, as n→∞,

||θ̂ − θ0||2 = Op

(√
T

n

)
.

Proposition 1 demonstrates that as T/n→ 0 the estimator is consistent. Moreover,

where T is fixed it is
√
n-consistent. This result is obtained allowing for generous

dependence in the error, and as long as the number of factors used in estimation is no

less than the true number. Notice also that no assumptions have been made regarding

the factors and the loadings other than bounded fourth moments; for instance, these

may be strong, weak, or non-existent. Indeed, Proposition 1 neither requires that the

factors or loadings be correlated with the covariates, nor for that matter, uncorrelated

with the error term.11

Proposition 1 can be compared directly to Theorem 4.1 in Moon and Weidner (2015),

which, under similar conditions, provides a consistency result for the LS-IFE estimator

applied to the original model. Their result establishes that

||θ0 − θ̂||2 = Op

(
1√

min{n, T}

)
,

11Bai (2009) also obtains an initial consistency result under weaker conditions on the errors than
||ε||2 = Op(

√
min{n, T}). However, this result is obtained assuming that R = R0, and the factors and

loadings are independent of the errors. Neither of these are assumed in Proposition 1.
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with this rate being determined largely by the condition ||ε||2 = Op(
√

max{n, T})
(Assumption SN(ii)), under which

||ε||2√
nT

= Op

(
1√

min{n, T}

)
.12 (3.1)

In similar fashion, the rate obtained in Proposition 1 can be attributed to the quantity

||ε̃||F which plays an analogous role in this paper. Under Assumption MD(iii) this can

be shown to satisfy

||ε̃||F√
nT

= Op

(√
T

n

)
.

Recalling the discussion in Section 2.2, it is worth stressing again the importance of

the difference between ε and ε̃. To highlight this, consider the rudimentary example

of identically and independently distributed conditionally homoskedastic errors, i.e.,

E[εitεjτ |C] = σ2 for i = j, t = τ and is zero otherwise. In this case,

E[||ε̃||2F ] = E[||Q>Xε||2F ] = E
[
E[tr(ε>PXε)|C]

]
= σ2T 2K = O(T 2),

from which it then follows by Markov’s inequality that ||ε̃||F = Op(T ), and so ||ε̃||F√
nT

=

Op(1) as T/n→ 0. By comparison,

||ε||2√
nT
≥ 1√

nT

1√
min{n, T}

||ε||F
p−→ σ√

min{n, T}
,

using 1√
rank(A)

||A||F ≤ ||A||2. Therefore, even in this simple case, ||ε||2√
nT

cannot be Op(1)

with T fixed, as long as σ is bounded from below by a constant.

4 Asymptotic Distribution

Typically the asymptotic distribution of an extremum estimator is obtained by expand-

ing the objective function locally around the true parameter value. It is, however,

difficult to obtain an expansion of the objective function (2.7) since this involves a sum-

mation over a certain number of eigenvalues of a matrix. Following Bai (2009), an

alternative approach would be to proceed from the first order conditions of the optimi-

sation problem and avoid dealing with the fully concentrated objective function. Yet

Moon and Weidner (2015) show that it is possible to analyse this objective function

directly, by utilising perturbation theory for linear operators to derive an expansion for

the perturbed eigenvalues of (Λ̃
0
F 0>)>Λ̃

0
F 0>/nT . Key to this approach is demon-

12Moreover, (3.1) also proves to be important for the asymptotic expansion of the objective function;
see Section 4.
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strating that the perturbation is asymptotically small, which in this case follows from

Proposition 1, whereby |θ0
κ − θ̂κ| is small, and from assuming that the ‘perturbation’

stemming from the error term, ||ε̃||2√
nT

, diminishes asymptotically. In light of the discussion

in the previous section, the significance of transforming the errors is again highlighted as

expansion of the objective function remains valid only so long as ||ε̃||2√
nT

is asymptotically

small. Since ||ε̃||2 ≤ ||ε||2, ||ε̃||2√
nT

will be asymptotically small in situations where this

will not be true of ||ε||2√
nT

.13

Assumption AE (Asymptotic Expansion). .

(i) R = R0.

(ii) 1
nΛ̃

0>
Λ̃

0
= 1

nΛ0>PXΛ0 p−→ Σ
Λ̃

0 as n→∞, with µR0(Σ
Λ̃

0) > 0 and µ1(Σ
Λ̃

0) <∞.

(iii) For T fixed, the matrix 1
T F

0>F 0 > 0, otherwise 1
T F

0>F 0 p−→ ΣF 0 > 0 as T →∞,

with µR0(ΣF 0) > 0 and µ1(ΣF 0) <∞.

In the absence of dynamics, Moon and Weidner (2015) show that, under certain

conditions, the asymptotic distribution of the LS-IFE estimator is unaffected by over-

statement of the number of factors. Though it is conjectured that a similar result can

be obtained in the present case, doing so is beyond the scope of this paper and the

asymptotic distribution is derived under the assumption that the number of factors is

correctly specified; that is R = R0 as in Assumption AE(i). A method to detect the true

number of factors is discussed in Section 6.3. Assumptions AE(ii) and AE(iii) assume

the factors and the transformed factor loadings both have a nonnegligible impact on the

variance of the term Λ̃
0
F 0> + ε̃.

Proposition 2 (Asymptotic Expansion). Under Assumptions MD and AE, if ||θ −
θ0||2 = Op(1), then, as n→∞ and T 2/n→ 0,

Q(θ) = Q(θ0)− 2√
nT

(θ − θ0)>d+ (θ − θ0)>D(θ − θ0) + r(θ),

where d := c+b(1) +b(2) +b(3), and the elements of these vectors and matrices are given

13The inequality ||ε̃||2 ≤ ||ε||2 is obtained by the submultiplicity of the spectral norm and noting that
||QX||2 = 1.
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by

Dκκ′ :=
1

nT
tr(Z̃κMF 0Z̃

>
κ′M Λ̃

0), (4.1)

cκ :=
1√
nT

tr(Z̃κMF 0 ε̃>M
Λ̃

0),

b(1)
κ := − 1√

nT
tr
(
MF 0 ε̃>M

Λ̃
0Z̃κF

0(F 0>F 0)−1(Λ̃
0>

Λ̃
0
)−1Λ̃

0>
ε̃
)
,

b(2)
κ := − 1√

nT
tr
(
MF 0Z̃

>
κM Λ̃

0 ε̃F 0(F 0>F 0)−1(Λ̃
0>

Λ̃
0
)−1Λ̃

0>
ε̃
)
,

b(3)
κ := − 1√

nT
tr
(
MF 0 ε̃>M

Λ̃
0 ε̃F 0(F 0>F 0)−1(Λ̃

0>
Λ̃

0
)−1Λ̃

0>
Z̃κ

)
.

Moreover, r(θ) is Op(
(1+
√
nT ||θ0−θ||2)2

nT ).

As will be seen shortly, the term c plays a central role in determining the asymptotic

distribution of the estimator. Terms b(1), b(2) and b(3) appear due to cross-sectional and

serial dependence in the error term, and, again, have corresponding terms described

in both Bai (2009) and Moon and Weidner (2015, 2017) which give rise to asymptotic

bias. Under Assumptions MD and AE, it can be established that b(1), b(2) and b(3) are

Op(T
1/5/
√
n) which suggests that the estimator will be asymptotically unbiased where

T 3/n → 0. This is formalised in the following result and is of course trivially satisfied

where T is fixed.

In order to establish the asymptotic distribution of the estimator, it is necessary

to place some restrictions on the relationship between the factors, the loadings and

the errors. In aid of this some additional notation is introduced. Let πJ be a J × 1

vector of all zeros, except the first element which equals 1. Moreover, let W be a

T × T shift matrix with zeros everywhere, except those elements directly above the

main diagonal, which take a value of 1. Define G(α) := (I − αW )−1W , G := G(α0),

g(α) := (IT + αG)>π, g := g(α0), H0 :=
∑∞

h=0(α0)hX−hβ
0g>, H1 :=

∑K
k=1 β

0
kXkG

and Hκ := Xκ−1 for κ = 2, . . .K + 1, H := (vec(H1), . . . , vec(HK+1)), and H+ :=

H + (vec(H0),0nT , . . . ,0nT ).

Assumption AD. (Asymptotic Distribution I)

(i) For each (n, T ) there exists a matrix ΣnT such that vec(ε) = Σ
1
2
nTvec(U) where

U is an n × T matrix with elements which are independent of the exogenous

covariates, the factors and the loadings, and independently distributed across i

and t, with E[uit] = 0, E[u2
it] = 1 and E[u4

it] ≤ c uniformly over i and t, and

ΣnT is a non-stochastic, symmetric and positive definite matrix with ||ΣnT ||1 ≤ c
uniformly over n and T .

(ii) The elements of the matrix M
Λ̃

0HκMF 0 have uniformly bounded fourth mo-

ments.
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Assumption AD(i) limits the degree of dependence in the error while still allowing for

heteroskedasticty and a more limited degree of cross-sectional and temporal dependence.

Alternative mixing-type assumptions could also be imposed. What is important, how-

ever, is the fact that the errors are now assumed to be independent of the factors and the

loadings. Assumption AD(ii) assumes the that the transformed variables M
Λ̃

0HκMF 0

have a sufficient number of finite moments.

Theorem 1 (Asymptotic Distribution I). Assume ||c||2 = Op(1). Under Assumptions

MD, CS, AE, and AD, as n→∞ and T 3/n→ 0,

√
nT (θ̂ − θ0)

d−→ N (0K+1,∆
−1
+ Ω+∆−1

+ ), (4.2)

where

∆+ :=
1

nT
H̃>+(MF 0 ⊗M

Λ̃
0)H̃+,

Ω+ :=
1

nT
H̃>+(MF 0 ⊗M

Λ̃
0)Σ̃nT (MF 0 ⊗M

Λ̃
0)H̃+,

and Σ̃nT =: (IT ⊗Q>X)ΣnT (IT ⊗QX).

Theorem 1 constitutes the most general result in this paper and shows that the

estimator is unbiased as n → ∞, whether T is fixed or T → ∞, as long as T 3/n → 0.

This is in spite of the lagged outcome, as well as the possibility of heteroskedasticity

and/or serial and cross-sectional dependence afforded under Assumption AD. Theorem

1 also contrasts sharply with results for the LS-IFE applied to the usual model in which

case the estimator is known to be inconsistent with T fixed, and even in the large n,

large T setting, would suffer from a bias of diverging order when T is small relative to

n, which would impede inference. The following section investigates in greater detail

the properties of the estimator when both n and T are large and provides additional

assumptions under which it is possible to establish consistency and unbiasedness under

the weaker condition T/n→ 0.

5 Large n, Large T Properties

In order to paint a more complete picture of the asymptotic properties of the estimator,

it is necessary to study it under an asymptotic regime where both n, T → ∞ and

possibly T/n → c > 0. To this end the following additional assumption is introduced.

Let Σ̃
1
2
nT := (IT ⊗Q>X)Σ

1
2
nT .

Assumption AD∗ (Asymptotic Distribution II). In addition to requirements of As-

sumption AD, ||vec(off(ΣnT ))||1 ≤ c and ||Σ̃
1
2
nT ||1 ≤ c, uniformly over n and T .

This assumption requires that the transformed covariance matrix Σ̃nT is also bounded

in absolute row and column sums, and limits further the degree of the dependence in
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the errors. The condition ||vec(off(ΣnT ))||1 ≤ c in particular is intimately related to the

condition T 3/n → 0 imposed in Theorem 1. When the model contains both a lagged

outcome and neglected dependence in the error these two sources of temporal depen-

dence may become conflated. Yet Theorem 1 demonstrates that as long as n grows

sufficiently fast relative to T , neglected serial dependence in the error does not result

in inconsistency or biasedness of the estimator. However, when T/n → c ≥ 0 this is

no longer the case and it becomes necessary to further limit the degree of serial depen-

dence in the error. Assumption AD∗ is also slightly stronger than would be necessary

since it limits cross-sectional dependence as well as temporal dependence.14 Naturally,

Assumption AD∗ can be dispensed with in the absence of dynamics.

Before establishing the asymptotic distribution, it must, in the first instance, be

established that the estimator remains consistent as T/n→ c with potentially c > 0.

Proposition 3 (Consistency II). Under Assumptions MD, CS and AD∗, as n, T →∞

||θ̂ − θ0||2 = Op
(
n−

1
3

)
.

Proposition 3 establishes a rate of consistency when both n and T diverge. If T

increases only very slowly with n, then it is known from Proposition 1 that the estimator

is close to
√
n-consistent. On the other hand, in the large n, large T setting, when T ∝ n,

similar to Theorem 4.1 in Moon and Weidner (2015) it can be established that the

estimator is also
√
n-consistent. Between these two scenarios the worst case order n−

1
3

in Proposition 3 is obtained. Notice also that this result does not require Assumption

AE and therefore does not require the factors to be strong, nor indeed that the correct

number of factors is known. Moreover, though this result is obtained under Assumption

AD∗, the assumption that the errors uit are independent of the factors and the loadings

would not be required.

Theorem 2 (Asymptotic Distribution II). Assume ||c||2 = Op(1). Under Assumptions

MD, CS, AE, and AD∗, as n, T →∞ with T/n→ c and c ≥ 0,

√
nT (θ̂ − θ0) + ∆−1(ψ(0) +ψ(1) +ψ(2) +ψ(3))

d−→ N (0,∆−1Ω∆−1), (5.1)

where,

ψ(0) := − 1√
nT

tr(Σ̃nT (G⊗M
Λ̃

0))πK+1,

ψ(1) :=
1√
nT

tr(Σ̃nT ((P F 0GMF 0 +GP F 0)⊗ ITK))πK+1,

ψ(2)
κ :=

1√
nT

tr(Σ̃nT (IT ⊗M Λ̃
0H̃κF

0(F 0>F 0)−1(Λ̃
0>

Λ̃
0
)−1Λ̃

0>
)),

ψ(3)
κ :=

1√
nT

tr(Σ̃nT (F 0(F 0>F 0)−1(Λ̃
0>

Λ̃
0
)−1Λ̃

0>
H̃κMF 0 ⊗ ITK)),

14Appendix B provides more discussion of this assumption.
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and ∆ := Υ(1) + Υ(2) and Ω := Υ(3) + Υ(4) + Υ(5) + Υ(6), with

Υ(1) :=
1

nT
H̃
>

(MF 0 ⊗M
Λ̃

0)H̃,

Υ(2) :=
1

nT
πK+1tr(Σ̃nT (GG> ⊗ ITK))π>K+1,

Υ(3) :=
1

nT
H̃
>

(MF 0 ⊗M
Λ̃

0)Σ̃nT (MF 0 ⊗M
Λ̃

0)H̃,

Υ(4) :=
1

nT
πK+1tr(Σ̃nT (G⊗ ITK)Σ̃nT (G⊗ ITK)) + tr(Σ̃nT (G⊗ ITK)Σ̃nT (G> ⊗ ITK))π>K+1,

Υ(5) := (Φ + Φ>),

Υ(6) :=
1

nT
πK+1tr(Ψ(M(4) − 3InT )Ψ>)π>K+1,

where Φ := (H̃
>

(MF 0 ⊗M
Λ̃

0)(Σ̃
1
2

nT )>M(3)diagv((Σ̃
1
2

nT )>(G ⊗ ITK)Σ̃
1
2

nT )π>K+1, the matrix

Ψ := diag((Σ̃
1
2

nT )>(G ⊗ ITK)Σ̃
1
2

nT ), υ
(p)
i := E[upi ], and M(p) is an nT × nT diagonal matrix

with diagonal elements υ
(p)
1 , . . . , υ

(p)
nT .

The most significant difference when comparing (5.1) to (4.2) are the four bias terms

ψ(0),ψ(1),ψ(2) and ψ(3). The first two of these, ψ(0) and ψ(1), arise due to the presence

of the dynamic regressor, and indeed ψ(1) is the analogue of the bias characterised in

Moon and Weidner (2017). The bias ψ(0), on the other hand, appears not to have been

described previously in the literature since it only arises in situations when there is some

dependence in the errors across time in addition to dynamics.15 Indeed it is ψ(0) that

is ultimately responsible for the requirement T 3/n→ 0 in Theorem 1, with Assumption

AD∗ serving to reduce the order of this term in order to obtain Theorem 2. Terms

ψ(2) and ψ(3) arise due to cross-sectional and time series dependence and are almost

exact duplicates of the expressions found in Bai (2009). However, when comparing

the expressions for ψ(0),ψ(1),ψ(2) and ψ(3) to those that would be obtained for the

untransformed model, there is one significant difference: the transformed cross-sectional

covariance matrix Σ̃nT has rank T 2K rather than nT . As a consequence, the order of

these bias terms are:

ψ(0) ψ(1) ψ(2) ψ(3)

Original Model Op

(√
n
T

)
Op

(√
n
T

)
Op

(√
T
n

)
Op

(√
n
T

)
Transformed Model Op

(√
T
n

)
Op

(√
T
n

)
Op

(√
T
n

)
Op

(√
T
n

)

This reveals something fundamental: projection of the entire model into the time

dimension of the panel does not make the incidental parameters in the cross-section

disappear entirely, it instead shifts them into the time dimension, where they may

15Moon and Weidner (2017) assume the errors are independent over time.
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interact with the extant problem in that dimension in complicated ways. Moreover, it

also suggests that as long as the ratio T/n → 0 the LS-IFE estimator applied to the

transformed model will remain consistent and unbiased. This is in stark contrast to

the same estimator applied to the original model where, although the LS-IFE estimator

is consistent as n, T → ∞, the analogues of ψ(0),ψ(1), and ψ(3) would be explosive in

probability and therefore would impede inference. This is formalised in the following

result.

Corollary 1 (Small T ). Under Assumptions MD, CS, AE, and AD∗, as n, T →∞ with

T/n→ 0

√
nT (θ̂ − θ0)

d−→ N (0,∆−1
∗ Ω∗∆

−1
∗ ),

where ∆∗ := Υ(1) and Ω∗ := Υ(3).

It is useful to conclude this discussion with a simple example to demonstrate visibly

the core message of the preceding paragraph. Consider the case in which the errors are

identically and independently distributed, and the true factors and loadings take the

form of individual effects, that is,

λ0 :=
(
λ0

1 . . . λ0
n

)>
, F 0 := ιT ,

where ιT is a T ×1 vector of ones. In this case ψ(2) = ψ(3) = 0K+1 because ΣnT ∝ InT .

Moreover, because ΣnT is diagonal ψ(0) = 0K+1, leaving the only remaining bias as

ψ(1). Since P F 0 = 1
T ιT ι

>
T , this reduces to

ψ
(1)
1 :=

σ2
0√
nT

1

T
tr(PX)tr(GιT ι

>
T ).

A bit of algebra reveals that

tr(GιT ι
>
T ) =

T−1∑
t=1

t∑
τ=1

(α0)τ−1 =
T

(1− α0)

(
1− 1

T

(1− (α0)T )

1− α0

)
. (5.2)

Now, since the trace of a projector is equal to its rank tr(PX) = TK, and, therefore,

the following expression is obtained:

ψ
(1)
1 =

√
T

n

K

(1− α)

(
1− 1

T

(1− αT )

1− α

)
. (5.3)

Notice again the significance of the transformation QX in reducing the rank of the

covariance matrix to T 2K. Without the transformation tr(ΣnT ) = tr(InT ) = nT , and
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so

ψ
(1)
1 =

√
n

T

1

(1− α)

(
1− 1

T

(1− αT )

1− α

)
, (5.4)

which matches (up to scale by
√
nT ) the familiar expression derived in Nickell (1981).

This again highlights the fact that transforming the model by QX does not eliminate all

traces of the incidental parameter problem that would have existed in the cross-section.

It simply transfers it to the time dimension where, as exemplified by comparing (5.3)

and (5.4), it will likely manifest itself in similar ways.

6 Further Matter

6.1 A Method of Moments Interpretation

The estimation approach described in this paper can be recast in terms of moment

conditions in which case the close kinship it shares with existing methods, in particular

the quasi-difference estimator of Ahn et al. (2013), and the FIVU estimator of Robertson

and Sarafidis (2015), becomes apparent. To see this suppose α0 = 0. Define Li :=

(IT ⊗ li)> where li is the TK×1 vector containing all the observations of the exogenous

covariates for each i. Strict exogeneity of the error term implies the moment condition

E
[
L>i εi

]
= E

[
L>i

(
yi −Xiβ − (IT ⊗ λ>i )vec(F>)

)]
= 0T 2K ,

where εi is the T × 1 vector of error terms associated with each i. Now, let

E
[
L>i (λ>i ⊗ IT )

]
= E

[
(IT ⊗ liλ>i )

]
=: (IT ⊗Ψ),

where the TK ×R matrix Ψ captures correlation between the covariates and the factor

loadings. The two equations above give rise to the finite sample analogue

ϕ(β,Ψ,F ) :=
1

n

n∑
i=1

L>i (yi −Xiβ)− vec(ΨF>).

In the framework described by Robertson and Sarafidis (2015), the set of moment con-

ditions above coincides with those that would occur under strict exogeneity. Therefore

minimising the following unweighted GMM objective function gives rise to their mini-

mum distance FIVU estimator

QFIV U (β,Ψ,F ) =: ϕ>(β,Ψ,F )ϕ(β,Ψ,F ). (6.1)
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The parameter Ψ can be profiled out of this objective function which, after some algebra,

gives rise to an alternative GMM estimator that is equivalent to minimising

QQD(β,F ) := ϕ>∗ (β,F )ϕ∗(β,F ) (6.2)

where the vector of moment conditions is

ϕ∗(β,F ) :=

(
1

n

n∑
i=1

(
V>(yi −Xiβ)⊗ li

))
,

with the T×(T−R) matrix V forming an orthonormal basis for the null space associated

with the columns of F .16 This second vector of moment conditions coincides with that

which would arise in the framework of Ahn et al. (2013) under strict exogeneity and

thus minimising GQD(β,F ) over (β,F ) produces an unweighted version of the quasi-

difference estimator described in that paper. Going further it is possible to wholly

concentrate the factors F out of the objective function in (6.2) at which point one

arrives at a univariate objective function which (up to scale) coincides with Q(β) given

in (2.7). This reveals that, at least in some cases, there is an intimate relationship

between the moment based estimation approaches of Ahn et al. (2013) and Robertson

and Sarafidis (2015) and the LS-IFE estimator, with it sometimes being possible to

reduce the former two estimation problems down to the optimisation of a univariate

objective function.17 Moreover, there is also the suggestion that the fixed T consistency

and unbiasedness of those moment biased approaches will, under certain conditions, also

carry over to the large n, large T setting, as long as T/n → 0.18 Of course when the

model is dynamic then these approaches will no longer coincide. Nonetheless, this paper

has demonstrated that it is in fact still possible to derive a set of moment conditions for

the dynamic model which can be reduced down to a univariate optimisation problem by

way of principle components.

6.2 Low Rank Covariates

Low rank covariates often appear in applied work, with obvious examples being those

that are either time or cross-sectionally invariant. In models with interactive effects,

identifying the coefficients associated with these covariates can be challenging since

they present another low rank structure in the model, in addition to the factor term.

16To be clear V is a function of F , though this is suppressed for ease of notation.
17These various methods can, in turn, be related to the procedure suggested by Chamberlain (1984)

for short panels with individual effects. In the present context, this could be understood as decomposing
Λ = PXΛ + MXΛ =: XΨ + e, where Ψ is a TK × R parameter to be estimated, and e is subsumed
into the error term.

18The relationship between these approaches also give an interesting interpretation to the transformed
LS-IFE estimator, showing that the method can also be viewed as the solution to the principle component
problem that involves a matrix of moment conditions rather than the covariance matrix the error ΛF>+ε
as would conventionally be the case. I am grateful to a reader for pointing this out.
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Mirroring the result obtained in Moon and Weidner (2017), where such covariates are

present it is, however, still possible to obtain consistent estimates under appropriate

conditions. Let ϑ denote a reordering of the parameter vector θ such that the first

KL coefficients, indexed l = 1, . . . ,KL, are those associated with low rank regressors,

and the remaining KH coefficients, indexed h = 1, . . . ,KH, denote those associated

with the regressors which have full rank. For simplicity it is assumed that the low rank

regressors have rank 1, though the following result extends naturally to the more general

case. The l-th low rank covariate can be decomposed as X l = vlw
>
l , with vl and wl

being n×1 and T ×1 vectors, respectively. These vectors can then be gathered into the

matrices V := (v1, . . . ,vKL
) and W := (w1, . . . ,wKL

). When some of the covariates

are low rank, special care must be taken in the construction of X. In this case X can

be constructed as (V ,X1, . . . ,XKH
) to ensure that X>X is invertible. Let Ṽ := Q>XV

and δH · Z̃H :=
∑KH

κ=1 δκZ̃κ.

Assumption LR (Low Rank). .

(i) minδH∈RKH :||δH||2=1

∑T
r=R+R0+KL+1 µr

(
1
nT (δH · Z̃H)>(δH · Z̃H)

)
≥ b > 0.

(ii) There exists c > 0 such that 1
nΛ̃

0>
M ṼΛ̃

0
> cIR0 and 1

T F
0>MWF

0 > cIR0

w.p.a.1.

Assumption LR is analogous to Assumption 4(ii) in Moon and Weidner (2017) and

requires what amounts to a strengthening of Assumption CS(ii), and an additional

condition to ensure that the low rank regressors are sufficiently distinct from the factors

and the transformed loadings so as to be able to distinguish one from the other. Here,

however, special care must be taken with Assumption LR(ii) because

1

n
Λ̃

0>
M ṼΛ̃

0
=

1

n
Λ0>(PX − PV)Λ0.

Since transforming the model by Q>X has the effect of projecting the model into the

column space of the covariates, it is not enough that the loadings be distinct from

each vl, as in Moon and Weidner (2017). In this context what is required is that the

projection of the loadings onto the column space of all the covariates is different from

the projection onto the column space of just the low rank covariates, which, clearly, will

require there to be some high rank model covariates.

Proposition 4 (Consistency – Low Rank). Under Assumptions MD, AE, AD∗, and

LR, as n→∞ and T/n→ 0

||ϑ̂− ϑ0||2 = Op(1).
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6.3 Estimating the Number of Factors

The result established in Section 3 demonstrates that in many instances the estima-

tor will remain consistent with the number of factors overestimated. However, since

overestimation of the number of factors will typically lead to a loss of efficiency in fi-

nite samples, it is desirable to input the correct number of factors. One approach to

detecting this number involves first estimating the coefficients with the number of fac-

tors overestimated, and using these estimates to construct a pure factor model. Then,

methods devised to detect the number of factors in a pure factor model can be applied.

Examples of these detection methods include Bai (2003), Onatski (2009) and Ahn and

Horenstein (2013). This section focuses on one of these, the eigenvalue ratio test of Ahn

and Horenstein (2013), and considers how, after transforming the model, this method

can be applied to detect the number of factors when T is small relative to n.

More generally, however, this section seeks to make two points. First, after having

transformed the model, other results which exist in the literature for the large n, large

T setting might also be ported to the small T setting, potentially with the additional

benefit of relaxing assumptions regarding dependence in the errors. Second, in situations

where factors exist in the error term which are uncorrelated with the covariates, alongside

those which are correlated, transforming the model and detecting the number of factors

may lead to efficiency gains, since only the number of factors which are correlated with

the error term need be inputted into the estimation procedure. Let

µ∗r := µr

 1

nT

(
Ỹ −

K+1∑
κ=1

θ̂κZ̃κ

)>(
Ỹ −

K+1∑
κ=1

θ̂κZ̃κ

)
+
T

n
IT

 , (6.3)

that is, µ∗r is the r-th largest eigenvalue of the right-hand side matrix. Then define

EigR(r) :=
µ∗r
µ∗r+1

for r = 1, . . . , T − 1.

The main modification here from Ahn and Horenstein (2013)’s original specification is

the addition of the matrix T
n IT .

Proposition 5. MD, CS and AE as n→∞ and T/n→ 0,

Pr

(
max

1≤r≤T
µ∗r = R0

)
→ 1. (6.4)

6.4 Alternative Approach

An alternative estimation approach to that studied in this paper treats the initial con-

dition, which has a rank of 1, as an additional factor. Though this increases the number

of factors, it also preserves another time period of data. It is useful to compare the
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performance of the two approaches.19 More specifically, with T c := T + 1

Y cSc(α) =
K∑
k=1

βkX
c
k + αy−1π

>
T+1 + ΛF c> + ε

=

K∑
k=1

βkX
c
k + Λ∗F ∗c>,

with Sc(α) := IT+1 − αW c, Λ∗ := (y−1,Λ) and F c∗ := (απT+1,F
c), and where

the matrices with superscript c now include an additional column relative to previous

sections. Then, using ∼ to indicate transformed variables as previously, consider the

alternate objective function

Qc(θ) :=
1

nT
tr

(Sc(α)Ỹ
c
−
K+1∑
κ=1

θκZ̃
c

κ − Λ̃
∗
F ∗c>

)>(
Sc(α)Ỹ

c
−
K+1∑
κ=1

θκZ̃
c

κ − Λ̃
∗
F ∗c>

) .

The alternative estimator θ̂
c

may then be defined as

θ̂
c

:= arg min
θ∈Θ

Qc(θ).

This estimator retains all of the essential properties of θ̂, including fixed T consistency

and a similar asymptotic distribution.

6.5 Standard Normality

Owing to the fact that the standard normal distribution is invariant to orthogonal

transformations, especially favourable rates of consistency with R ≥ R0 can be achieved.

Key to showing this is the following result.

Lemma 1. Assume that the elements of the n × T matrix ε are standard normal and

independent across i and t. Then ||ε̃||2 = Op(
√
T ).

Proof. Since the normal distribution is invariant to orthogonal transformations, it fol-

lows that Q>Xε is a TK × T matrix with independent standard normal entries. Latala

(2005) shows that such a matrix will be Op(
√

max{TK, T}) = Op(
√
T ).

Using this result the following is obtained.

Proposition 6. Under the Assumptions of Lemma 1, Assumptions MD and CS,

||θ̂ − θ0||2 = Op
(

1√
n

)
.

This result demonstrates that, under standard normality, and with R ≥ R0, the rate

of consistency is independent of T .

19This alternative approach has been studied more extensively in previous versions of this paper.

22



7 Monte Carlo Simulations

This section provides simulation results which highlight the different properties of the

LS-IFE estimator when applied to the original model, and to the transformed model.

In the following design the factors and loadings are both generated independently from

standard normal distributions and the true number of factors is set equal to 2; i.e.

R0 = 2. Two covariates are generated: X1 = ΛF> + η, where η has elements drawn

independently from a standard normal distribution, and X2, which is also drawn from

a standard normal. The entries of the error ε are generated as (Σ
1
2
n ⊗Σ

1
2
T )vec(U), where

the elements of U are independently drawn from a standard normal distribution, and

Σn and ΣT are diagonal matrices with elements drawn uniformly between 0.5 and 2.5.

The number of Monte Carlo replications is 10000. Tables 1a – 1c display the bias and

the standard error of the naive LS estimator (Naive), the LS-IFE estimator applied

to the original model (IFE), the LS-IFE estimator applied to the transformed model

(Q-IFE-1), and approach described in Section 6.4 (Q-IFE-2).

Table 1a: Bias (SE) α

Naive IFE Q-IFE-1 Q-IFE-2
n \ T 6 9 12 6 9 12 6 9 12 6 9 12

30 -0.003 -0.002 -0.001 -0.106 -0.005 -0.002 -0.043 -0.004 -0.003 -0.105 -0.007 -0.002
(0.060) (0.040) (0.026) (0.222) (0.054) (0.040) (0.173) (0.054) (0.040) (0.276) (0.066) (0.041)

60 -0.002 -0.001 -0.001 -0.086 -0.007 -0.001 -0.013 -0.003 -0.001 -0.023 -0.005 -0.001
(0.038) (0.031) (0.026) (0.184) (0.049) (0.030) (0.093) (0.043) (0.030) (0.120) (0.050) (0.029)

150 -0.001 0.000 0.000 -0.237 -0.003 -0.001 -0.005 -0.001 0.000 -0.008 -0.001 0.000
(0.027) (0.019) (0.017) (0.260) (0.034) (0.023) (0.067) (0.026) (0.022) (0.071) (0.028) (0.020)

300 0.000 0.000 0.000 -0.085 -0.003 -0.001 -0.002 -0.001 0.000 -0.002 -0.001 0.000
(0.017) (0.014) (0.012) (0.175) (0.030) (0.020) (0.034) (0.020) (0.015) (0.034) (0.051) (0.015)

Table 1b: Bias (SE) β1

Naive IFE Q-IFE-1 Q-IFE-2
n \ T 6 9 12 6 9 12 6 9 12 6 9 12

30 0.473 0.480 0.486 0.218 0.064 0.042 0.154 0.041 0.031 0.126 0.057 0.047
(0.138) (0.110) (0.097) (0.242) (0.106) (0.082) (0.240) (0.097) (0.076) (0.262) (0.093) (0.073)

60 0.475 0.483 0.486 0.129 0.039 0.027 0.054 0.014 0.009 0.040 0.012 0.009
(0.123) (0.101) (0.087) (0.189) (0.077) (0.055) (0.141) (0.063) (0.046) (0.135) (0.063) (0.047)

150 0.475 0.483 0.489 0.289 0.023 0.014 0.027 0.002 0.001 0.013 0.002 0.001
(0.118) (0.093) (0.080) (0.252) (0.042) (0.031) (0.095) (0.033) (0.028) (0.078) (0.036) (0.030)

300 0.475 0.485 0.488 0.121 0.027 0.010 0.007 0.001 0.000 0.003 0.001 0.000
(0.111) (0.090) (0.078) (0.161) (0.035) (0.022) (0.048) (0.024) (0.020) (0.037) (0.026) (0.021)

Table 1c: Bias (SE) β2

Naive IFE Q-IFE-1 Q-IFE-2
n \ T 6 9 12 6 9 12 6 9 12 6 9 12

30 0.001 0.000 0.001 -0.054 -0.003 -0.001 -0.020 -0.002 -0.001 -0.055 -0.003 -0.001
(0.142) (0.100) (0.088) (0.197) (0.095) (0.081) (0.199) (0.097) (0.082) (0.236) (0.104) (0.085)

60 -0.001 0.000 -0.001 -0.047 -0.004 -0.001 -0.009 -0.002 -0.001 -0.016 -0.004 -0.001
(0.096) (0.077) (0.065) (0.134) (0.075) (0.059) (0.118) (0.076) (0.059) (0.135) (0.081) (0.062)

150 0.000 0.000 0.000 -0.012 -0.002 -0.001 -0.003 0.000 0.000 -0.003 0.000 0.000
(0.067) (0.048) (0.043) (0.137) (0.045) (0.039) (0.081) (0.045) (0.040) (0.089) (0.050) (0.042)

300 0.000 0.000 0.000 -0.046 -0.002 -0.001 -0.002 0.000 0.000 -0.002 0.000 0.000
(0.042) (0.035) (0.031) (0.087) (0.033) (0.028) (0.044) (0.033) (0.028) (0.049) (0.036) (0.031)
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Inspecting Table 1a, the Naive estimates of α appear to perform relatively well, which

is expected since the model is not transformed in any way and the errors and factors

are both drawn independently in each time period. The LS-IFE estimates of α, on the

other hand, suffer from a bias with fixed T originating from the implicit transformation

of the model to remove the factor term, which generates bias in the autoregressive

coefficient. As expected, both the Q-IFE-1 and the Q-IFE-2 estimates of α are unbiased

as n increases. For the coefficient β1, the Naive estimates are severely biased, with this

bias being persistent irrespective of n and T . For small T , the LS-IFE estimates are also

biased, which stems from the heteroskedasticity of the errors in both the cross-section

and across time. Owing to the significant heteroskedasticity in the design, when both

n and T are small, the Q-IFE-1 and Q-IFE-2 estimates have sizeable biases - though

smaller in magnitude than the Naive or IFE estimates. This bias diminishes rapidly as

n increases. Since X2 is neither dynamic, nor correlated with the factor term, estimates

of β2 generally perform well across all n and T . Tables 2a – 2c below present coverage

probabilities of the estimators based on the asymptotic variance-covariance matrix, and

with a nominal value of 95%.

Table 2a: Coverage α %

Naive IFE Q-IFE-1 Q-IFE-2
n \ T 6 9 12 6 9 12 6 9 12 6 9 12

30 85.35 85.30 86.65 60.32 83.73 88.69 77.53 88.66 89.84 45.21 72.39 70.86
60 85.47 86.74 87.31 53.57 79.59 86.39 85.32 91.16 92.68 67.83 74.33 78.90
150 86.99 86.26 88.01 22.63 71.12 79.61 88.83 93.29 93.34 71.22 86.40 85.66
300 84.46 87.16 87.70 27.85 62.05 72.27 91.22 93.63 93.91 82.59 88.49 90.03

Table 2b: Coverage β1 %

Naive IFE Q-IFE-1 Q-IFE-2
n \ T 6 9 12 6 9 12 6 9 12 6 9 12

30 00.84 00.02 00.00 53.68 74.19 80.50 64.39 81.51 84.43 61.75 82.86 85.62
60 00.13 00.00 00.00 62.17 80.23 82.98 77.18 88.67 91.07 74.38 86.42 90.40
150 00.03 00.00 00.00 33.31 81.52 87.90 82.75 92.56 93.79 79.76 89.44 92.03
300 00.00 00.00 00.00 44.95 73.44 88.59 89.63 93.00 94.01 82.85 90.88 92.79

Table 2c: Coverage β2 %

Naive IFE Q-IFE-1 Q-IFE-2
n \ T 6 9 12 6 9 12 6 9 12 6 9 12

30 86.54 84.87 85.91 84.78 93.09 93.49 86.74 92.95 93.38 75.79 90.91 92,29
60 84.79 86.30 86.42 81.87 92.86 93.62 88.34 92.94 93.48 80.25 89.33 92.23
150 88.13 86.56 87.71 53.81 93.17 93.92 91.03 93.17 93.86 83.23 90.15 92.98
300 83.71 87.26 87.41 74.34 93.56 93.55 91.89 93.50 93.92 84.16 91.66 93.07

For α the coverage of the Naive estimates remains consistently below its nominal

value, while for the IFE estimates it decreases with fixed T . In the case of the latter, this

decrease in coverage is expected due to the fixed T bias, with coverage only improving
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when both n and T increase. In contrast, the coverage of the Q-IFE-1 and Q-IFE-

2 estimates improve as n increases, with T fixed or T increasing slowly. The story is

similar for β1 in Table 2b. The coverage of Naive estimates is incredibly poor, presenting

near 0 across all n, T values. The coverage of the IFE estimates is also poor with either

n or T small, and improves only as both of these increase. The Q-IFE-1 and Q-IFE-2

estimates present poor coverage with both n and T small, yet these rapidly improve as n

increases. When comparing the performance of Q-IFE-1 and Q-IFE-2, it is, in general,

the case that Q-IFE-1 outperforms Q-IFE-2. This is for two reasons. The first is that,

while omitting a time period, Q-IFE-1 uses only 2 factors in estimation, whereas Q-IFE-

2 uses 3, with the extra factor being present to control for a possibly endogenous initial

condition. The second reason is that an approach which includes the lagged outcome

as an additional regressor on the right-hand side of the outcome equation, benefits from

additional variation coming from pre-sample exogenous covariates transmitted through

the initial condition.20 This variation is lost when treating the initial condition as an

additional factor. As T →∞ alongside n, the impact of the initial condition, whichever

way it is treated, becomes negligible and it is unclear which estimation approach should

perform best. Furthermore, is it not necessarily clear what the correct number of factors

to input into the estimation routine should be for Q-IFE-2 when both n and T are large.

It is therefore useful to apply the eigenvalue ratio test described in Section 6.3 to uncover

the appropriate number of factors to use in estimation.

Table 3: Number of Factors Chosen Q-IFE-2 %

EigR = 2 EigR = 3
n \ T 6 9 12 6 9 12

30 27.26 41.36 47.15 30.58 08.66 05.28
60 40.74 60.39 70.11 11.86 01.01 00.35
150 55.09 79.98 89.01 03.52 00.06 00.00
300 73.36 85.15 93.62 00.02 00.00 00.00

Table 3 presents the percentage of times that the number of factors is chosen to

be either 2 or 3 when applying the modified eigenvalue ratio test (EigR) described in

Section 6.3 to the Q-IFE-2 residuals. Only in the smallest sample size, n = 30, T = 6,

is the number of factors chosen to be 3. This suggests that the impact of the initial

condition becomes quickly negligible. In light of this, Tables 4a and 4b below present

bias and coverages for Q-IFE-2 with R = 2. Comparing these results to those presented

previously, these estimates are generally better than Q-IFE-1. However, Q-IFE-1 still

outperforms Q-IFE-2 when it comes to the autoregressive parameter α.

20This pre-sample variation is the origin of H0; see Section 4.
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Table 4a: Bias (SE), Q-IFE-2 with R = 2

α β1 β2

n \ T 6 9 12 6 9 12 6 9 12
30 -0.034 -0.004 -0.002 0.126 0.057 0.047 -0.013 -0.002 -0.001

(0.150) (0.054) (0.041) (0.211) (0.108) (0.088) (0.171) (0.097) (0.083)
60 -0.008 -0.003 -0.001 0.040 0.012 0.009 -0.006 -0.001 -0.001

(0.072) (0.039) (0.029) (0.111) (0.058) (0.045) (0.103) (0.071) (0.058)
150 -0.002 -0.001 0.000 0.013 0.002 0.001 -0.001 0.000 0.000

(0.048) (0.024) (0.020) (0.064) (0.032) (0.027) (0.069) (0.044) (0.038)
300 -0.001 -0.001 0.000 0.003 0.001 0.000 -0.001 0.000 0.000

(0.027) (0.018) (0.015) (0.034) (0.024) (0.020) (0.039) (0.034) (0.028)

Table 4b: Coverage Q-IFE-2 with R = 2 %

α β1 β2

n \ T 6 9 12 6 9 12 6 9 12
30 59.75 78.99 76.18 67.00 76.62 78.19 88.19 92.71 93,31
60 82.18 84.03 86.08 81.02 89.55 91.50 90.95 93.61 94.16
150 84.75 91.32 89.04 87.86 93.05 93.80 92.26 93.36 93.89
300 92.34 92.39 92.11 90.95 93.42 94.06 92.39 93.47 94.02

8 Conclusion

In conclusion, this paper has introduced a new, simple method to estimate linear panel

data models with interactive fixed effects designed for situations where T is small rela-

tive to n. By transforming the model and then applying the LS-IFE estimator of Bai

(2009), the approach proposed in this paper is shown to deliver
√
n-consistent estimates

of regression slope coefficients with T fixed which are asymptotically unbiased in the

presence of cross-sectional dependence, serial dependence, and with the inclusion of dy-

namic regressors. Under certain conditions, these results have also been shown to extend

settings where T grows with n, so long as the ratio T/n→ 0. This stands in contrast to

the usual case where the LS-IFE estimator generally delivers inconsistent estimates with

T fixed, and suffers from biases of the order n/T and T/n as n, T →∞. Careful study of

this estimation approach has also revealed interesting connections between the LS-IFE

estimator and several method of moments-based approaches, bridging the gap between

what are, at present, two quite separate literatures. In particular, adapting the former

approach to short panels has provided new insights on the properties of the latter group

of approaches when applied to large panels. Several other consequences of this approach

have also been discussed, particularly the ability to apply other inferential procedures

designed for the large n, large T setting to the transformed model. This is illustrated by

modifying the eigenvalue ratio test of Ahn and Horenstein (2013) to render it applicable

in the present setting.

There are two natural extensions to this paper, both of which are currently in

progress. The first is to notice that the estimator proposed in this paper can be ob-
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tained as a marginal likelihood associated with a maximal invariant statistic under the

group of transformations (2.2). Using the full likelihood of the maximal invariant may

potentially lead to improved estimation of the autoregressive parameter, as has been

shown in a similar context by Barbosa and Moreira (2021). The second extension is

to incorporate more general predetermined regressors which are intuitively difficult to

handle in this framework. Exploiting the established connections between the LS-IFE

estimator and method of moments-based approaches may prove especially useful in this

regard. Finally, it is worth stressing that arguably the most powerful concept developed

in this paper is the idea that multi-dimensional nuisance parameters may be removed

from one (or possibly several) dimensions, by reducing the model into a lower dimen-

sional subspace. This, really, is what lies at the heart of this paper and may well prove

to be fruitful in other applications.
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