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Abstract

This paper studies the estimation of a linear panel data model with interactive
fixed effects. A transformation is introduced which, after having been applied,
renders the least squares (LS) estimator of Bai (2009) consistent and asymptotically
unbiased when n is large and 7' is fixed. This is termed the transformed least squares
(TLS) estimator. Going further, these properties are shown to also carry over to
the large n, large T setting, provided T//n — 0. This contrasts sharply with the
usual case, where the LS estimator is, in general, inconsistent when n is large and

T is fixed, and is asymptotically biased when both n and T are large.
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1 Introduction

1.1 Model

This paper contributes to the extensive literature on linear panel data models with in-
teractive effects. These models have proven to be very popular since, in many situations,
the existence of such structures is well motivated; for example, arising due to unobserved
heterogeneity across individuals, or exposure to common shocks. The model studied in
this paper assumes that, in a panel with entries indexed i = 1,...,nand t =1,...,T,

outcomes are generated according to

y, = XB+Af, +e, (1.1)

where y, and €; are n x 1 vectors of outcomes and error terms, respectively, X; is an
n X K matrix of covariates, A is an n X R matrix of time-invariant factor loadings, and
f+1s an R x 1 vector of time-varying factors. It is assumed that both the outcomes and
the covariates are observed by the econometrician, while the factors, the loadings, and
the error terms are not. The parameter of interest in this model is the K x 1 vector (3.

This model can be seen as a generalisation of familiar models of additive effects, such
as individual, time, or group effects. For example, individual and time effects nest as a

special case of (1.1) in which

that is, where a vector of heterogeneous loadings is interacted with a unit factor, and
where a vector of unit loadings is interacted with a time-varying factor. More generally,
however, with interactive effects, no restrictions are placed on the factors or the load-
ings to be multiples of unit vectors, or otherwise, and both are permitted to be fully
heterogeneous.

The main obstacle to consistent estimation of 3 arises in situations where the unob-
served interactive effects are somehow correlated with covariates in the model. In this
event, an endogeneity problem arises, and, as a result, naive estimation approaches will

typically be inconsistent. One possible remedy to this is to treat the components of the



factor term as additional parameters to estimate, known as the fixed effects approach.
However, treating both the factors and loadings as fixed effects gives rise to incidental
parameters in both dimensions of the panel, which, in turn, generates complications for
the estimation of the parameter of interest 3. These complications arise as a conse-
quence of the incidental parameter problem (Neyman and Scott, 1948), which describes
the situation where the presence of high-dimensional (nuisance) parameters adversely
impacts the estimation of common parameters in a model. In long panels this prob-
lem can, to some extent, be overcome, and, in particular, it has been shown that the
least squares interactive fixed effects (LS) estimator that treats both the factors and the
loadings as fixed effects is consistent when both n and T are large, though it typically
suffers from asymptotic bias (Bai, 2009; Moon and Weidner, 2017). It is, however, in
short panels that the incidental parameter problem is felt most acutely, and when n is
large and T fixed the LS estimator is inconsistent, in general.

This paper proposes a simple remedy to this problem, by introducing a transforma-
tion of the model, which, after having been applied, renders the LS estimator consistent
when n is large and T is fixed. This is termed the transformed least squares interactive
fixed effects (TLS) estimator. In contrast to typical approaches, this transformation is
not designed to purge the incidental parameters from the model entirely. Instead, the
aim is to reduce the dimension of the model, and, in doing so, relieve it of incidental
parameters in the cross-section. The TLS estimator retains many of the most attractive
features of the LS estimator, including certain robustness properties and, crucially, the
ability to profile out the factors and the loadings from the objective function, and to
reduce estimation to a univariate optimisation. And yet, unlike the LS estimator, the
TLS estimator is shown to not only be consistent, but also asymptotically unbiased
when n is large and T is fixed.

A deeper understanding of the relationship between the LS and TLS estimators
comes from also studying the TLS estimator when both n and T are large. This analysis
reveals that the TLS estimator remains consistent and, indeed, remains asymptotically
unbiased, provided T'/n — 0. However, when T'/n — v € (0, 00) it exhibits asymptotic
bias analogous both in its origin and its functional form to that of the LS estimator.
Inspection of the resultant expressions establishes that the bias of the TLS estimator is
of a lower order than that of the LS estimator. And yet, at the same time, comparison

of the asymptotic variance of the two estimators indicates that this is achieved at the



expense of efficiency, with the former being less efficient than the latter, at least in
some circumstances. Overall the results of this paper point to a bias-variance trade-off
between the two estimators, which is most apparent, and most important, when n is

large and T is fixed, and more generally when T is small relative to n.

1.2 Related Literature

In light of the fixed T-inconsistency of the LS estimator, alternative estimation ap-
proaches have been considered which are applicable when n is large and T is fixed. Yet
unlike in large panels, where little if anything need be assumed about the relationship
between the factors, the loadings, and the covariates, many, if not most of the fixed T
approaches rely on the possibility of correlation existing between these, and indeed lean
into this as a means to derive alternative estimators. In this line of research, approaches
may broadly be placed into one of two groups: those that impose a specific functional
form for the relationship between the factor term and covariates, and those that do not.

The first group consists of common correlated effects (CCE) approaches, which orig-
inate from the seminal work of Pesaran (2006). At the core of this approach is an
assumption that at least some model covariates also admit a factor decomposition, such
that the factors can be estimated by taking cross-sectional averages of these covariates.
This ultimately gives rise to estimators that are often consistent when n is large and T'
is fixed, as well as when both n and T are large. The properties of this approach have
been extensively studied, e.g., in a likelihood setting (Bai and Li, 2014), with dynamic
regressors (Everaert and Groote, 2016), with an unknown number of factors (Wester-
lund and Urbain, 2015). Other contributions in this line of research include Westerlund
(2020), De Vos and Everaert (2021), and Juodis and Sarafidis (2022b). Though these
methods are often easy to implement, the imposition of a particular relationship between
the factors and the covariates can be restrictive, and whether or not this is a reasonable
assumption is largely a matter of context.

This leads naturally to the second group of methods that seek to exploit possi-
ble correlation between observed covariates and the factor structure, without imposing
any particular functional form for this relationship. This second group might sim-
ply be termed correlated effects approaches, and includes quasi-difference approaches

(Holtz-Eakin et al., 1988; Ahn et al., 2001, 2013), the instrumental variables estimators



of Robertson and Sarafidis (2015), and the hybrid approach of Juodis and Sarafidis
(2022a).! Though in some sense less restrictive, these estimators are often much more
difficult to implement than are CCE-type estimators, with it being necessary to directly
estimate multiple nuisance parameters alongside the parameter of interest, and in some
cases, to do so from a set of highly non-linear moment conditions. As a consequence,
these estimators appear less frequently in applied work.?

The TLS estimator follows in this second line of research, in the sense that it does not
impose a particular functional form for the relationship between the factors, the loadings,
and the covariates. It does not, however, share the complexity of those approaches, as
it consists of a univariate optimisation which depends only on the parameter of interest,
and not (directly) on nuisance parameters arising through modelling the factor structure
in the error. Nonetheless, subsequent sections show that the TLS estimator is closely
related to two of these estimators in particular: the quasi-difference estimator of Ahn
et al. (2013) (ALS), and the FIVU estimator of Robertson and Sarafidis (2015) (RS). A
detailed comparison of these approaches reveals both similarities and subtle differences
between the LS and TLS estimators, and comparable one-step ALS and RS estimators.
This is an interesting finding, and goes some way to bridging the gap between the least
squares and method of moments-based approaches to panel models with interactive

effects.?

1.3 Outline

Section 2 sets out the estimation approach, introducing the transformation and providing
some intuition behind the key differences that lie between the LS and TLS estimators.
Section 3 establishes the asymptotic properties of the TLS estimator, including consis-
tency and asymptotic normality, and draws comparisons with the corresponding results
for the LS estimator. Section 4 examines the relationship between the TLS estima-
tor and some alternative estimators, under a large n, fixed T asymptotic. Section 5
collects additional considerations, including inferential procedures, a method to detect
the correct number of factors, and an extension to dynamic models. Section 6 con-

tains simulations, and Section 7 concludes. Proofs of all results are to be found in the

'Freyberger (2018) also falls under this heading.

2Hsiao et al. (2022) describe an alternative approach also applicable to short panels.

3This paper is also closely related to the seminal works of Balestra and Nerlove (1966), Nickell
(1981), and Chamberlain and Moreira (2009).



Supplementary Material.

1.4 Notation

Throughout the paper all vectors and matrices are real unless stated otherwise. For
an n x 1 vector a with elements a;, [|lallz == />~ a?. Let A be an n x m matrix
with elements A;;. When m = n, and the eigenvalues of A are real, they are denoted
tmin(A) = pn(A) < ... < p1(A) = pmax(A). The spectral norm and Frobenius norm
of A are denoted ||Allz = \/pmax(A"A) and ||A||p == \/tr(AT A), respectively. The
notation || A||max is used to denote maxi<j<, maxi<j<m |Ai;|. Let P4 = A(ATA)J“AT
and M 4 =1, — P 4, where I, is the n X n identity matrix and + denotes the Moore-
Penrose generalised inverse. An n x 1 vector of ones is denoted ¢,,. For a matrix A which
potentially has an increasing dimension, O,(1) is used to indicate that ||A]j2 = Op(1)
and, similarly, ©,(1) signifies that || A2 = 0,(1). Throughout, c is used to denote some
arbitrary positive constant. The operation vec(-) applied to an n X m matrix A creates

an nm x 1 vector vec(A) by stacking the columns of A.

2 TLS Estimator

Treating both the factors and the loadings as additional (nuisance) parameters, the
LS estimator of (1.1) is obtained as the values (8, A, F') which minimise the sum of
squared residuals. In seminal work, Bai (2009) studies the properties of this estimator
and shows that with strictly exogenous covariates the LS estimator of 3 is consistent
when the number of factors is known and both n and T' are large. Further results have
been provided by Moon and Weidner (2015, 2017) who demonstrate that the estimator
remains consistent with the number of factors unknown, but not underestimated, and
also with the possible inclusion of predetermined regressors, including lagged outcomes.
These authors establish the asymptotic properties of the LS estimator and, in particu-
lar, document asymptotic biases that arise in the presence of cross-sectional and serial
dependence and/or heteroskedasticity, and due to inclusion of predetermined regressors.
These biases originate from the incidental parameter problem and ultimately cause the
LS estimator to be inconsistent when 7T is fixed. Yet, as is shown subsequently, by first
transforming the model, the LS estimator can be rendered consistent and asymptotically

unbiased when n is large and T is fixed.



2.1 Transformation

It is useful to begin by re-writing the model in matrix form. Let the n x T matrix
Y = (yy,...,Yr), X be the n x T matrix containing observations of the k-th covariate,
and the T x R matrix F = (fy,...,f7)". The shorthand X - 3 is used to denote

Zszl B X . With this notation, the model can be written more succinctly as
Y =X -B+AF" +e. (2.1)

Define the n x TK matrix X = (X1,...,Xg). It is assumed that X has full
rank, i.e., rank(X) = min{n, TK}.* Take a singular value decomposition X = USV'",
where the matrices of singular vectors U and V are n x rank(X) and T'K x rank(X),
respectively, and the diagonal matrix of singular values S is rank(X) x rank(X). Define
the transformation matrix Q- = UV ", with which the following transformed variables

can be defined:

Y =QxY,  Xi=QxXy,

A = Q&A, € = Q;(-:,
in which case premultiplying (2.1) by Q; yields the transformed model
Y=X-B+AF" & (2.2)

The key properties of Q- are presented in Appendix A.1. Intuitively, the action of
Qy is most important when T'K < n, in which case Q acts to reduce the model
into the T K-dimensional subspace spanned by the columns of X. In particular, the
dimension of the transformed factor term AF " will no longer depend on n, whereupon
the model is relieved of incidental parameters in the cross-section.” A second important
feature of @« is that transforming the model leads to no loss of information in the

covariates, which is manifest in the property QxQDTCDC = X.% Finally, if the covariates

41f X is not full rank, or indeed, if one chooses to specify X using some, but not all of the columns
of the covariates, subject to the satisfaction of the requisite conditions, the TLS estimator will retain
its essential properties.

5Reducing the dimension of the factor term may relieve the model of incidental parameters in the
cross-section, but the effect of these parameters does not disappear entirely. Their effect is still present
through A, the part of the factor loadings that remains, which manifests itself as an additional incidental
parameter in the time dimension; see Section 3.4.

6See Appendix A.1.



used in the construction of Q- are strictly exogenous, under quite general conditions,
the transformation serves to reduce the order of the error term which, ultimately, is key

to estimating (2.2) when n is large and T is fixed.”

2.2 Principal Components

The underlying mechanics of the LS estimator are most easily understood with the
intuition that, given the factors and the loadings, the coefficients can be estimated by
a linear regression, and, similarly, given 3, estimating the factors and loadings is a
standard principal component problem. Where n is large and T is fixed it is the latter
step that proves to be challenging; in particular, estimating the n-dimensional factor
loadings. For this reason it is useful to consider the factor term in isolation in order to
demonstrate the key differences that lie between estimation of the original model, and
of its transformed counterpart.

Assume that the true 3 is observed, and that both A and F have full column rank.
Then Y — X - 8= AF" + ¢ has a pure factor structure. Decompose the factor term as
AF' = AFT, where A and F' are n x R and T x R matrices, respectively, which satisfy
n’lATA =1Ip and FF is diagonal.® Consider the following:

r T A

(Y - X-B)(Y - X - )

nT Vn
1 A 1 A
— _AFTFAT S 4 ( FAT + AFTeT T) =
T Jn + T € + € +ee NG

A /1. .7. .
= —|=F F A,A F e).
T (pETE) ek A Fe
Given that nflATA = Ir and FTF is diagonal, then, absent of the second term on the
right, the columns of A would be eigenvectors of (nT)~' (Y =X -8)(Y —X -8)T. Where
both n and T are large, several authors have shown that, in spite of this second term,

estimating A in this manner may still be possible. For example, under the condition

lellz = Op(y/max{n,T}) employed in Moon and Weidner (2015), dependence in the

"This paper focuses on the case where the regressors are strictly exogenous, as in Bai (2009). Lagged
outcomes can also be accommodated as is discussed in Section 5.3. If a covariate X is endogenous
but valid instruments are available, then those instruments can, in principle, substitute for X in the
construction of X. A more complete treatment of the IV setting will be the focus of future work.

8Tt is straightforward to see that such matrices exist. For example, by the singular value decom-
position, decompose AF'T = USV . Let A be the R columns of v/nU associated with the nonzero
singular values, and F' be the corresponding R columns of n"2VST. As the columns of U and V are

orthonormal, it follows that n_lATA = IR, FTF is diagonal, and AFT =AF".



error term is sufficiently limited that, with suitable conditions on the factors and the
loadings, the second term is (uniformly) ©, (1) when both n,T" — oco. However, such
arguments typically fail when T is fixed.

Consider instead the transformed model. Let A and F be TK xR and T'x R matrices,
respectively, which satisfy AF‘T = AFT, nil.;iT.;i = IR, and FTF is diagonal.” Note

that F' typically differs from F'. One arrives at a similar expression to before,

1 - = - S A
E(Y—X'B)(Y—X'ﬁfﬁ
1

1 - T A ~T =
— —AFTFA 2 —("FA AFT&T "T)
T \/ﬁ+nT € + € +ee
A | v o~
— 2 (ZpTE A A F.8).
O (pETE) ek A

<>

Yet now, if the covariates used to construct Q« are strictly exogenous, under quite
general conditions, ||€||2 = Op(n%\/f) from which it follows that, again, with suitable
conditions on the factors and the loadings, the second term in the above is (uniformly)
0, (1) as n — oo with T fixed (or indeed T — 00). As a consequence, it is possible to
estimate the columns of A as eigenvectors of (nT)™ (Y — X -8)(Y — X -3)T. Although
in general A will not equal A, these two matrices will share the same column space

which suffices to control for the term in estimation.

2.3 Objective Function

The transformed model (2.2) can be estimated by minimising the following least squares
objective function:

QB.AF)= Lu ((ff ~X.p-AFT) (¥-X.p —[XFT)> L (23)

Both the factors and the transformed loadings can be profiled out of (2.3), in which case
one arrives at an objective function involving 8 alone
1 - o N o o
QB = — > ut((YXﬂ) (YXﬁ)), (24)

n
t=R+1

°Tt is tacitly assumed that rank(AF ') = rank(AF").



that is, the profile objective function involves the sum of the (7'— R) smallest eigenvalues

of the right-hand side matrix.'” Using this, the TLS estimator 3 can then be defined as

B := argmin Q(3), (2.5)

,36@5

where ©4 denotes a suitable parameter space for B.1112:13

3 Asymptotic Properties

3.1 Consistency

Throughout the following both A and F' are treated as fixed parameters in estimation
and the subscript 0 is now introduced to distinguish true parameter values. The following

assumptions are made.
Assumption MD.
i e parameter vector ies in the interior o , where is a compact subse
i) Th t tor By lies in the interi f ©3, where Opg i t subset
of RE.
(ii) The elements of X, Ay, and Fy have uniformly bounded fourth moments.

Assumption MD(ii) imposes standard conditions on the moments of the covariates,
the factors, and the loadings. Let C,,r denote o(X1,..., X k), that is, the sigma-algebra

generated by the covariates, and define 3¢ := E[vec(g)vec(e) " |Cnr].

Assumption EC. Conditional on C,r, &;; are independent over i, with E[e;|C,,7] = 0,
and E[e}%|Cyr] uniformly bounded. In addition, the eigenvalues of 3¢ are uniformly

bounded away from zero and from above by a constant.

Assumption EC allows for heteroskedasticity (conditional and unconditional) in both

dimensions of the panel, as well as serial dependence. The conditions imposed are weaker

1%See equation (3.3) in Moon and Weidner (2015) for details.

Note that the objective function Q(8) need not be convex in @, and therefore there may exist
local minima. A practical consequence of this is that any optimisation routine should be initialised from
multiple starting values.

2Notice that when TK > n, QxQ; = I,,, and therefore the TLS estimator is equal to the LS
estimator: see Appendix A.1l.

13The author is grateful to a referee for pointing out that, with strictly exogenous regressors, the
TLS estimator coincides with an iterative estimator described in Breitung and Hansen (2021), which
the authors refer to as ALS*. This is based on an iterative procedure detailed in the appendix of Ahn
et al. (2013) as a means to compute their estimator. Neither Breitung and Hansen (2021) nor Ahn et al.
(2013) establish any asymptotic results for this estimator.

10



than the assumption that the errors (and typically also the covariates and the loadings)
are identically distributed over 4, as is frequently assumed in the literature on short
panels with interactive effects (see, e.g., Ahn et al. (2013) and Robertson and Sarafidis
(2015)). Moreover, it is not required that the error be independent of covariates, the
factors, and the loadings as in, for instance, Bai (2009). In aid of the following let

X 5= Zszl 6e X . Moreover, let T, == Re + Rg + 1.
Assumption CS.

(i) Re> Ry = rank(AgF|), where R, denotes the number of factors used in estima-

tion, and R, and Ry are constants that do not depend on sample size.

(ii) mingegr.|s,=1 dor—r. He((T)HX - 8)T(X - 6)) > b >0 wpa.lasn— oo,

with T > Ty, fixed or T — oo.

Assumption CS(i) allows for the true number of factors, Ry, to be unknown as long
as the number of factors used in estimation, R, is no less than Ry. This assumption
also formalises the core model assumption that the factor term AOFJ has a low (relative
to sample size), fixed rank. Assumption CS(ii) is a multicollinearity condition. Notice

that

T
1 - ~
i > — (X -8 (X-0
5eRfI}:1|T?H2:1 a <nT( ) ( )>

t=Tmin

. 1 57 =

AERTKXRe , FeRT*Ro

where X = (vec(X1),...,vec(X g)). Going further, it can be established that

T
1 - -
i —(X-8) (X6
sentiB, s 2 I (r(%-07(%-9)
1

> ' : XT(Mp@MpX ), 3.2
_AER"XREI}I}}‘GRTXROMHHH (nT ( F® A) > ( )

where X is defined analogously to X4 Hence, Assumption CS(ii) is satisfied as long
as there remains a sufficient amount of variation in the regressors after having been

projected orthogonal to arbitrary T x Ry factors and n x R, loadings. This is analogous

14See Appendix A.2.
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to Assumption A in Bai (2009) and Assumption NC in Moon and Weidner (2015).1°

Proposition 1 (Counsistency). Under Assumptions MD, EC, and CS, 3 LN By as n —

oo, with T > Tin fized or T — oo.

Proposition 1 demonstrates the TLS estimator is consistent as n — oo, regardless of
whether T is fixed or T' — oco. This result is obtained allowing for heteroskedasticity and
serial dependence in the error, and as long as the number of factors used in estimation is
no less than the true number. Notice also that no assumptions have been made regarding
the factors and the loadings other than bounded fourth moments; for instance, these
may be strong, weak, or non-existent. Indeed, Proposition 1 neither requires that the
factors or loadings be correlated with the covariates, nor for that matter, uncorrelated
with the error term.'

Proposition 1 can be compared directly to Theorem 4.1 in Moon and Weidner (2015)

which, under similar conditions, provides a consistency result for the LS estimator. Their

result establishes that

18- Boll: = 0, (W) ,

with this rate being determined largely by the condition ||e||s = O,(\/max{n,T}) (As-
sumption SN(ii)) under which

lell2 _ 1 17
VvnT O (wmin{n, T}> ‘ 3:3)

In similar fashion, the rate obtained in Proposition 1 can be attributed to the quantity

|€||2 which plays an analogous role in this paper. Under Assumption EC this can be

shown to satisfy

|\|/€1|7; =0, <n7i> .

Recalling the discussion in Section 2.2, it is worth stressing again the importance of

15See Appendix C in Higgins and Martellosio (2023) for further discussion on the relation between
these conditions.

6 Using ||€]l2 = (’)p(T%)7 which is established in the proof of Lemma B.2(i), inspection of the proof
of Proposition 1 reveals that as n — oo with 7" > T, fixed, the TLS is \/ﬁ—consistent irrespective of
the strength of the factors.

"Moreover, (3.3) also proves to be important for the asymptotic expansion of the objective function;
see Section 3.2.

12



the difference between € and €. To highlight this, consider the rudimentary example of
identically and independently distributed errors, i.e., E[e;,¢,€ip,] = 02 for i1 = iy and

t1 = t9, and is zero otherwise. In such a case,

lefl o 1 1

p g
VT = T ey 7

as n — oo with T fixed using rank(A) 2| A < ||A|l2. Therefore (nT) 2||e||3 cannot

be 0,(1) with T fixed, provided o is bounded from below by a constant.

3.2 Asymptotic Expansion

Typically the asymptotic distribution of an extremum estimator is obtained by expand-
ing the objective function locally around the true parameter value. It is, however,
difficult to obtain an expansion of the objective function (2.4) since this involves a sum-
mation over a certain number of eigenvalues of a matrix. Following Bai (2009), one
approach would be to proceed from the first-order conditions of the optimisation prob-
lem and avoid dealing with the fully concentrated objective function. Yet Moon and
Weidner (2015) show that it is possible to analyse this objective function directly, by
utilising perturbation theory for linear operators. Key to this approach is demonstrating
that the perturbation is asymptotically small, which in this case follows from Proposi-
tion 1, whereby |3 — By |l2 is small, and from (nT )7% |€||2 diminishing asymptotically.
In light of the discussion in the previous section, the significance of transforming the
errors is again highlighted as the expansion of the objective function remains valid only
so long as (nT)_%Hé'HQ is asymptotically small. Since [|€]2 < |le]|2, (nT)_%Hé'HQ will
be asymptotically small in situations where this will not be true of (nT)fé llell2-'® Let

Dyr i=Cnr V 0([&0, Fg)."? The following assumption is made.

Assumption ED. Conditional on D,, ¢;; are independent over i, with Ele;|D,r] = 0,
E[eZ|Dnr] > 0, and SUP|p|jo=1 E[(v"&;)*D,r] uniformly bounded for D,,r-measurable

vectors v.

Assumption ED strengthens EC to restrict dependence between the error and the

factor term, and imposes more stringent conditions on serial dependence in the error.

8 The inequality ||€]|2 < ||€]|2 is obtained by the submultiplicativity of the spectral norm and noting
that [|Q«|l2 = 1; see Appendix A.1.

9For two sigma-algebras A and B, AV B denotes the sigma-algebra generated by the union of both
A and B.

13



The last part of this assumption can be understood as a generalised bound on the fourth
moment of the error, and is closely related to Assumption C(iv) in Bai (2009) which can

be seen by noticing that
, rLororor
ﬁ Z Z Z Z cov €Zt152t275n3‘€zt4) = E[(UTEZ')4] - E[(sti)Q]Q,
t1=1ta=1t3=1t4=1

with v = ¢p/v/T. The more general condition arises since, unlike in Bai (2009), the

errors are not assumed to be independent of the factors, the loadings, and the covariates.
Assumption AE.
(i) Re = Ry = rank(AoFy).

(ii) n*1A3A0 2, ¥z, a3 n — oo, with T > Ry + 1 fixed or T'" — oo, where the

eigenvalues of 3 A, are bounded away from zero and from above by a constant.

(iii) For T > Ry + 1 fixed, the eigenvalues of F| F are bounded away from zero and
from above by a constant, otherwise T~ F] Fo & Sp, as T — oo, where the

eigenvalues of ¥, are bounded away from zero and from above by a constant.

Assumption AE(i) strengthens CS(i) and imposes that the number of factors used
in estimation equals to the true rank of the factor term as in Bai (2009) and Moon and
Weidner (2017). A method to detect the true number of factors is discussed in Section
5.2. Assumptions AE(ii) and AE(iii) are similar in spirit to the strong factor assumption,
Assumption B in Bai (2009) and SF in Moon and Weidner (2015). Assumption AE(ii) is,
however, somewhat stronger since it could be that n_lAg A converges in probability to
a positive definite matrix, while n_IAOT]XO converges in probability to a singular matrix.
The leading example of this is where some or all of the factor loadings are independent of
the covariates. Suppose, for example, that Ag; ~ iid(0, X)), with E[||Xo||3] uniformly
bounded, and are independent of the covariates. Then as n — oo, with T fixed or

T — oo and T/n — 7 € [0,00),

1
—AJAO = min {1, 7K} x Xj.

Thus, if v > 0 and X > 0, then Assumption AE(ii) would still be satisfied. However,

if v = 0 then this is no longer the case, and while the TLS estimator would remain

14



consistent (Proposition 1 does not require Assumption AE(ii)), it would become more
challenging to establish its asymptotic distribution. In this event, one may instead

pursue a random effects approach; see, e.g., Section 5 in Hsiao (2018).

Proposition 2. Assume 8 % By as n — oo, with T > Ty fized or T — oco. Under

Assumptions MD, ED, and AE, as n — oo, with T > Tyin fixzed or T — oo,

Q(8) = Q(By) - jﬁ(ﬂ —Bo) d+ (B Bo) D(B - Bo) +r(B),

where d == ¢ + bV + @ 4 1) with

1 = =T
Dkle = ﬁtr(XklMFoXkQfoo)

_ 1 5 =T

Cp = mtr(XkMFOE M]\o)

L (M ETM; X Fo(FlFo)"\(Ag A )‘U&Té)
ko T Fq Apgr kL0 o L0 0 30 0
) 1 T T
b = (MFOXkMAOEFO(FJFU) L(Ag Ag) 1Aoe)
3 1 - - 1, T~ _1~T=
b = (MFOETM;\OEFO(FJFO) LAy Ag) 1A, Xk>.

Moreover, r(8) is 0,((nT) ™ (1 + vVnT||B — Boll2)?)-

Proposition 2 establishes an expansion of the objective function around the true
parameter value 3, from which the asymptotic distribution of the estimator can be

obtained.

3.3 Asymptotic Distribution

In order to describe the asymptotic distribution of the estimator some additional nota-

tion is introduced. Let

1 -7 = ~
V = ﬁx (MF0®M]\O)2D(MF0®M]\0)X7

Yp = E[vec(e)vec(e) |Dpr], and Tp = (I @ Q1) Zp(I1 @ Qy).
Assumption AD.

(i) The elements of M p, A, Xk, Ag, and Fy have uniformly bounded eighth moments.
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(ii) There exist nonstochastic matrices D and V such that D & D and V & V as
n — oo, with T > Ty, fixed or T — oo, and the eigenvalues of D and V are

bounded away from zero and from above by a constant.

The first part of Assumption AD(i) requires that after having been transformed by
M p,.A,, the covariates have finite eighth moments. Intuitively this can be thought of
as applying a weighted demeaning to the data. If, for example, ||[PxAq||max; ||A0/|max,

and || X k||max are uniformly bounded, and
17+
Hmin <nA0 AO) >c>0,
then this can be shown to hold.

Theorem 1 (Asymptotic Distribution). Assume ||c|2 = Op(1). Under Assumptions
MD, ED, CS, AE, and AD, as n — oo,

(i) with T > Twin fized or T — oo and T'/n — 0,

VnT(B - By) & N(0,D7 VD),

(ii) with T — oo and T'/n — v € (0,00),

ViT(8 - By) + D (™M + @) L A(0,DVD ),

where

w._ L s % T T AT A1
Yy = mtr(ED(IT®MA0XkF0(FOF0) (AgAo) Ay ))

@.__1 5 T -1 AT AN-1AT %
= tr(Xp(Fo(Fy F Ay A A X Mp, @1 .
hy s (Zp(Fo(Fg Fo)  (AgAo) Ay XyMp, ® ITk))

Theorem 1 establishes that the TLS estimator is asymptotically normally distributed.
When n — oo and T is fixed it is asymptotically unbiased. When n, T — oo and T'/n —
0 it can be established that (! and ) are 0,(1), and therefore the TLS estimator
remains asymptotically unbiased. However, when n,T — oo and T'//n — v € (0, 00) the

TLS estimator, like the LS estimator, may exhibit asymptotic bias.
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3.4 Comparison with LS Estimator

The terms 1[)(1) and 1/J(2) that appear in Theorem 1 are near duplicates of the correspond-
ing expressions described in Theorem 3 of Bai (2009), which provides a distributional

result for the LS estimator. This result, translated in the present context, reads
4 _ 1 2)\ d _ _
VT (Brs — Bo) + DL§(¢£§ + ¢£s?) 5 N(0, D5 VisDig), (3.4)
as n,T — oo with T'/n — ~ € (0,00), and where

1 _ _
wl(}s)k = (Zp-(Ir © Ma, X Fo(Fg Fo) ' (Ag Ao) ' Ag))

—tr
vnT
1 _ _
Yigy = \/ﬁtr(Zp*(Fo(FoTFo) YAJAQ) A X M p, ® I,))
1
Dis = ﬁXT(MFO & MAO)X
1
Vi = n—TXT(MFO ® Mp,)Ep-(Mp, ® Mp,)X,

with Drg and Vg being nonstochastic matrices, such that Dyg LN Dis and Vg LN Vis
as n, T — oo with T/n — v € (0,00), and Ep« = E[vec(e)vec(e) " | D% 5] with D ==
Cnr V o(Ag, Fy).

Comparing (3.4) to Theorem 1, one may observe that when n,T — oo and T/n —
v € [K~!,00) the LS estimator and the TLS estimator are asymptotically equivalent.
This is so because with TK > n, QxQ§ = I,,, and therefore the action of the transfor-
mation is redundant. However, when T'/n — v € [0, K1) this is no longer the case. In

particular, examining the order of the bias terms:

LS Estimator O, (ﬁ) o, (ﬁ)
TLS Estimator O, <\/§> Op<min {ﬁ, \/Z} > .

Therefore, while for the LS estimator 1/;% is explosive as n,T — oo and T'/n — 0,
for the TLS estimator both ¢(1) and ¢(2) are 0p(1) under the same asymptotic, and

thereby the TLS estimator is asymptotically unbiased. Indeed, it is on account of this
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difference that the TLS estimator is consistent with 7T fixed, while the LS estimator is
not.

A natural question arises as to the relative efficiency of the LS and TLS estimators.
There is no clear ordering, in general. Nonetheless, insight can be gained from consid-
ering the particular case in which the errors are homoskedastic. In this scenario, the

following result is obtained.

Proposition 3. Assume Xp = Xpx = agInT, and there exist nonstochastic matrices D
and Drg such that D 2 D and Drg 2 Dig as n, T — oo with T/n — v € (0,00), and
the eigenvalues of D and Drg are bounded away from zero and from above by a constant.

Moreover, assume

avar(VnT (8 — By)) = ogD !
avar(VnT (Brg — By)) = Ug]DIjSl’

where avar(-) denotes asymptotic variance. Then
avar(VnT(B — By)) = avar(vVnT (Bs — By))-

Proposition 3 establishes that the LS estimator will, in some instances, be more
efficient than the TLS estimator. To appreciate the source of the inefficiency, notice

that
1
D - D;s = ﬁxT(MFo ® (PAO - PPXAO))X' (3‘5)

The LS estimator implicitly estimates both the factors and the loadings simultaneously.
In transforming the model, information about the original factor loadings is lost which,
ultimately, may result in a larger variance. This information loss is manifest in (3.5). Of
course, as remarked on previously, when v € [K~!,00) the two estimators are asymp-
totically equivalent, and therefore they achieve the same asymptotic efficiency. This is
manifest in (3.5) as Pp,a, = Pa, with TK > n.

One may ask whether the model could be transformed in an alternative way in order
to minimise any efficiency loss. If, for example, Ag is a smooth function of X, one may

consider using powers of X in the manner of a series approximation to construct an n x d
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matrix W, and thereafter construct Qy and proceed as previously. Alternatively, one
may have access to additional external variables which can supplement the covariates in
‘W to achieve a better approximation of the column space of the factor loadings. Indeed,
in the event that col((X, Ag)) C col(W) there is no loss of information in transforming
model through Q,y, and therefore avar(v/nT(8—8,)) = avar(v/nT(B;s—B;)). However,
there will typically be a cost to this in terms of asymptotic bias, since the analogue of
1@ that appears in Theorem 1 would generally be of order min{n, d} (nT)fé. Therefore
improving on the approximation at the expense of a larger d would typically result in
greater bias.

Following on from this discussion, it is natural to compare a generalised least squares

interactive fixed effects estimator (GLS) constructed as

sk -1
IBGLS = (XT ((MFO ®MA0)ED*(MF0 ®MA0))+ X)

XX (Mp, ® M) Zp-(Mp, ® Ma,))" vec(Y),

and a corresponding generalised transformed least squares interactive fixed effects esti-

mator (GTLS)

-1
~ % ~T ~ + ~
Birs = (7 (e Mz Eo(M e, 5 M5,) " )

~T ~ + ~
x X ((MFO © My )Ep(Mp, ® M;\O)> vee(Y).
The relative efficiency of these estimators is compared in the following result. Let

. 1 =T < T 5

D* = ﬁX ((MFO ® MAO)ED(MFO ® MA0)> X
. 1

DLS = ﬁx—r ((MF() ® MA())ED*(MFO ® MAO))+ X.

Proposition 4. Assume Xp = Xp« = X, where X is nonstochastic, and there exist
nonstochastic matrices D* and Dig, such that D* 2 D* and Dig 2 Dig as n, T — oo

with T/n — v € (0,00), and the eigenvalues of D* and Dig are bounded away from zero
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and from above by a constant. Moreover, assume

avar(VnT (Bgris — Bp)) = D!
avar(vVnT (Bars — Bo)) = Digh.

Then
avar(VnT (Barrs — Bo)) = avar(VnT (Bars — Bo)).

Intuitively, the source of the relative inefficiency of the GTLS estimator remains the

loss of information through transforming the factor loadings.

4 Alternative Estimators

According to Theorem 1, when n is large and T is fixed the TLS estimator is consistent
and asymptotically unbiased. This stands in contrast to the LS estimator which is
generally inconsistent with T fixed. There are, however, alternative estimators that can
be applied to estimate 3, when 7T is fixed. Of particular interest here are the FIVU
estimator of Robertson and Sarafidis (2015) (RS), and the quasi-difference estimator of
Ahn et al. (2013) (ALS). This section places the RS, ALS, and TLS estimators in a
common framework and establishes connections between them. Since the focus of this
section is on the large n, fixed T setting, it is assumed throughout the following that X

has full column rank.

4.1 RS Estimator

Under strict exogeneity

E [(IT ® X)Tvec(e)] ~E [(IT ® %) vee(Y — X - By — AOFOT)] —0.
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If, in addition, one assumes the data {X;, Ao, €;} are identically distributed over i, and

that the factors are fixed, then
E [:xTAOFJ } - YE [vec(Xi))\g’ } F]
= n‘I’()FJ.QO

This leads to the FIVU estimator of Robertson and Sarafidis (2015), which is based on

the moment condition
E|(I7 %) vec(Y — X - By) — nvec(\IloFoT)} —0. (4.1)

Though their approach is predicated on the factor loadings being random, one may
instead adopt a fixed effect perspective treating these as additional parameters. In

doing so one may reframe
3 vee(Xi)Ad; = XTAg = (XTX)2 A, (4.2)
i=1
and so consider the alternate moment condition
E [(IT ®X) Tvec(Y — X - By) — vec((XTX)2AgF] )] ~0, (M-RS)

which, notice, does not rely on the factor loadings and the covariates being identically
distributed over the cross-section. This latter moment condition is referred to as M-RS
since, despite differing from (4.1), both conditions share a common conception.

M-RS does not, however, uniquely identify Ay nor Fy since the product AOFOT =
AOH H _1Fg = ./LF*T for any Rg x Ry invertible matrix H. This is a consequence of a
fundamental indeterminacy inherent to the factor structure, and is typically dealt with
by focusing on a particular factorisation of AoF g . There are multiple factorisations

which may be plausibly imposed, but for concreteness the following scheme is adopted:

Fgrs = , ARgs is unrestricted, (R-RS)

2OWhere X; is T x K.
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where ®rg is a (1" — Rp) x Ry matrix of unrestricted parameters. Let ©3; and Op
denote the parameter space of A and F, respectively, and let O denote the restricted

parameter space of F' under R-RS. The RS estimator is obtained as

(Brs» Ars, Frs) = arg min Qrs(B, A, F), (4.3)
[36@5, AE@]\, FE(:)F

with

Qrs(B, A, F) == ppg(B, A, F)Wegs(B, A, F)

Yrs(B, A, F) = % <(IT ® X) Tvec(Y — X - 8) — Vec((DCTf)C)%AFT)) 7

where W denotes a positive definite weighting matrix.

4.2 ALS Estimator

A different moment condition is studied by Ahn et al. (2013) which takes the form
E|(Vo®X) vec(Y — X - 8,)| =0, (M-ALS)

where the T' x (T — Rp) matrix VYV forms a basis for the left null space of Fy. As
previously, M-ALS fails to uniquely identify Vg, as VoH forms a basis for the left null
space of Fy for any (T'— Rg) x (T'— Ry) invertible matrix H. As a consequence, additional

restrictions are adopted. Ahn et al. (2013) consider the following restriction:

3]
v=| ", (R-ALS)

—I7_g,

where ®a1g is an Ry x (T — Ry) matrix of unrestricted parameters. Let ©y, denote the

restricted parameter space of V under R-ALS. The ALS estimator is obtained as

(Bars, VaLs) == argmin  Qas(8, V), (4.4)
,36@5, Ve,
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with

aLs(B,V) = ars(B, V)Wepars(8,V)

1

Pars(B.V) = — (Vo X) Tvec(Y ~ X - ),

where W denotes a positive definite weighting matrix.

4.3 TLS Estimator

The TLS estimator can be obtained from the moment condition
E [(Vo® Qx) vec(Y — X - By)| =0, (M-TLS)

which holds under Assumption ED. This is similar to M-ALS, however, the TLS esti-
mator can be understood to utilise an alternative restriction to R-ALS which takes the

form
VIV =17 g,. (R-TLS)
Under R-TLS it is possible to profile ¥V out of the objective function to obtain

B := arg min ( min Qrs(0, V)>

,66@/3 VeOy,

= argmin Q(3),

BE@g

where Oy denotes the restricted parameter space for V under R-TLS, and

Q11s(8,V) = e11s(B,V)ers(8,V)

Pris(8.V) = (Y Q) veelY — X -6,

4.4 Asymptotic Comparisons

Though the TLS estimator uses an identity weighting matrix, notice that if the errors

gqt ~ 1id(0, 0[2)) conditional on D,,7, then the optimal weighting matrix associated with
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M-TLS is (up to scale)

. 1 _ 1
W* = = (ViVo®QxQx) " = I ryri-

- 2
o0 o

Thus, transforming the model by Q« tacitly imposes the optimal weighting matrix under
homoskedasticity. This, as it turns out, is important to ensure that the estimator remains
consistent when T' — oo. Intuitively, as n,T — oo and T//n — K ~! the TLS estimator
approaches the LS estimator. Since the LS estimator is known to be consistent when
both n and T are large, this closeness is desirable, and is a mirror to the relationship
between the within estimator and the optimal GMM estimator discussed in Alvarez and
Arellano (2003). The aim of this section is to draw comparisons between the RS, ALS,
and TLS estimators. However, since the TLS estimator cannot be separated from the
way in which it is weighted, comparable one-step ALS and RS estimators are studied.
For the RS estimator this amounts to setting W = (I ® (X"X)~!), and for the ALS
estimator setting W = (I'7_g, ® (XTX)~1). Though insightful, to be clear, the results
obtained in this section are specific to this choice of weighting matrix and would not
necessarily apply under alternative weighting schemes. In the first result, Proposition 5
establishes that a one-step RS estimator that imposes R-RS is asymptotically equivalent

to the TLS estimator.

Proposition 5. Assume it is possible to decompose AoF] = A*FI such that F, € Op.
Set W = (It @ (XTX)™!) and let @ == (B;vec(®)) and 8y = (By; vec(®.)), where B,
is the unrestricted block of F.. Let Ogrs denote the parameter space of 8. Assume that

asn — oo with T > Ro + 1 fized, the GMM estimator defined by

ORrs == argmin min QRS(ﬁaj\aF((p)) -
0€0yrs \AE€O;

satisfies
vV nT(éRs ) i) N (0, D;{éVRsﬂ)ﬁé) ,

with Drs = plim,,_,.. GRsWGrs and Vrg = plim,,_,.. nT x GisWHrsWGrs, and

2Gince A is unrestricted under R-RS, with W = (I ® (X' X)) it proves convenient to profile A
out of the objective function.

24



where

Grs = E[Vers(Bo, F(®+))[Dnr]

Hrs = Elprs (8o, F(®+))ers (8o, F(24))|Dur,

and @rs(Bo, F(®.)) is the moment condition obtained upon profiling out A; see the
proof details. Under Assumptions ED and AE, as n — oo with T > Rg+ 1 fized,

VnT(Brs — Bo) % N(0,D~'VD™1).

=

Proposition 5 establishes that the TLS and one-step RS estimators will share the
same asymptotic distribution, despite the RS estimator imposing a restriction of a dif-
ferent nature. This is so because, while R-RS restricts the factors, these will only feature
in the asymptotic distribution of ¢} through the projector M g, which, provided that it
is indeed possible to decompose AOFOT = A*FI such that F, € O, equals to M g, .
This latter point is, however, an important caveat. If this condition does not hold, then
M-RS in combination with R-RS may fail to identify 3, though it may still be iden-
tified under alternative restrictions, such as R-TLS. Identification failures of this kind
have been remarked on previously; see, e.g., Hayakawa (2016). In this sense restrictions
imposed on the factor term for the purposes of identification are only without loss of
generality if these are indeed compatible with the true, unknown factor term.

An obvious question arises as to whether this asymptotic equivalence also holds for
the corresponding one-step ALS estimator. Proposition 6 below establishes that this is

not necessarily the case.

Proposition 6. Assume it is possible to decompose AOFJ = A*F*T such that F, € Op.
SetW = (It_p,®(XTX)™1) and let @ = (3; vec(®)) and 8y = (By; vec(®.)), where ®.
is the unrestricted block of F. Let ©g ars denote the parameter space of 6. Moreover,
let Vi = (®.;—Ir_pg,) and assume that as n — oo with T' > Ry + 1 fized, the GMM

estimator defined by

Oars = argmin Qars(3, V(®)),

0€Op ALs
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satisfies
-~ d _ _
VTLT(OALS — 00) SN (O’DAiSVALSDAiS) ,

with Darg = plim,,_, GKLS WGars and Varg == plim,,_,  nT x GXLS WHaArLsWGaLs,

and where

Gavs = E[Vears(Bo, V(@) Dur]

Haws = El@ars(Bo: V(®:)@aLs(Bo, V(®.))| Dyt ).

Under Assumptions ED and AFE, asn — oo with T > Ry + 1 fized,

VT (Bars — Bo) % N(0,D7'V,DY), (4.5)
where
D, = hmif(v V) @ Mz )X
T Saoo nT U Ao
V. — bpli 1 .X*;T T M > T M ‘X_;
= plim R V] 0 M Bo(v.] @ My, ) E

The asymptotic distribution of the one-step ALS estimator will generally not coincide
with that of the TLS estimator (nor indeed the one-step RS estimator under R-RS),
unless VIV* = I7_pR,, i.e. unless V, forms an orthonormal basis for the left null space
of the factors.?” Notice that Proposition 6 also assumes that it is possible to decompose
the factor term in the manner of R-RS. This is because the existence of a matrix V € Oy,
such that VT Fy = 0 is equivalent to the assumption that it is possible to decompose
AOFJ = A*FI such that vec(F,) € Op.%3

Overall the results of this section illustrate the importance of both the moment con-
dition and any adopted normalisation in determining the properties of the estimator.
The TLS and ALS estimators consist of a moment condition and a particular normalisa-
tion. Although the moment conditions are similar, the difference in their normalisations
is important and ultimately may result in these estimators having different asymptotic

distributions (Proposition 6). The RS estimator is not coupled with a particular normal-

221f T — Ry = 1 then VIV* will be a scalar and the covariance matrix will equal to that of the TLS
estimator.
#8ee Appendix A.3.
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isation, however, if one considers a normalisation which is, to some extent, equivalent to
that used by ALS, the asymptotic distribution of the resultant RS estimator coincides
with that of the TLS estimator and not the ALS estimator (Proposition 5).?* As a
final observation, notice that even under homoskedasticity the asymptotic variance of
the ALS estimator would not collapse to D! unless V, is orthonormal, and therefore

the TLS estimator will be more efficient. This is formalised in the following result.

Proposition 7. Assume Xp = U%InT, and there exist nonstochastic matrices D, Dy,
V, and V., such that D LN D, D, LN D,, V LN V, and V., LV, as n = oo with
T > Ry + 1 fixed, and the eigenvalues of D, Dy, V, and V, are bounded away from zero

and from above by a constant. Moreover, assume

avar(vnT(8 — B,)) = D~'VD™!
avar(VnT(Bars — By)) = D, 'V.D, .

Then

N

avar(VnT (Bars — B)) = avar(vVnT(8 — By)),

where avar(-) denotes asymptotic variance.

5 Further Matter

5.1 Inference

This subsection describes how to proceed with asymptotic inference. Two settings are
considered, in turn. The first case corresponds to the large n, fixed T' setting, while the
second case corresponds to the large n, large T setting. In the interest of space, a single
set of conditions is presented under which the results in the following subsections can
be obtained. Let I',.(A) = A® (2 ® I,,) for an nT x nT matrix A, with Q being a
T x T matrix with elements wy, s, = 1{|t1 —t2| < br}, and by is a positive integer-valued

sequence.

24Propositions 5, 6, and 7 establish asymptotic results for ALS and RS estimators that do not employ
optimal weighting matrices. If, instead, one considers optimal GMM estimators, then the RS and ALS
estimators are asymptotically equivalent which follows from Theorem 4 of Robertson and Sarafidis
(2015). Further, one can show that these are, in turn, equivalent to the GTLS estimator described in
Section 3.4.
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Assumption IF.

(i) The elements of X and M p,. A, XM r, have uniformly bounded eighth mo-

ments.

(i) n~1AJ Ag LN A, as n — 00, where the eigenvalues of 34, are bounded from

above by a constant.

(iii) Conditional on D,r, &;; are independent over i, with E[e;| D, 7] = 0, E[e%|Dpr] >
0, and sup|y|,—1 E[(v"€&;)'|D,r] uniformly bounded for D, 7-measurable vectors

v.

(iv) |0y (Ep)—Epll2 = 0p(1) as n, T, by — oo with T/n — v € (0,00) and b%./n — 0.

Assumption IF imposes more stringent conditions on several variables. Weaker re-
strictions can be imposed upon the errors, at the expense of more restrictive conditions
on the factors and loadings; for example, that these are uniformly bounded as in Moon
and Weidner (2017). Appendix A.4 verifies IF(iii) and IF(iv) under first order serial

correlation as an illustration.

5.1.1 Inference under Large n, Fixed T

When T is fixed the TLS estimator is asymptotically unbiased. Therefore, in order
to proceed with asymptotic inference, one need only obtain consistent estimators of
the asymptotic covariance matrices. Notice, however, that minimisers of the objective
function (2.3) with respect to the transformed factor loadings and the factors are not
unique. In order to resolve this indeterminacy, estimates of the transformed factor
loadings and the factors may be defined in the following manner. Consider a singular
value decomposition (f’ - X - B) = Z;f:l syugv, with singular values sp < ... <
s1. Define A= vn(uy, ..., ug,) and F = (s1v1,...,5r,UR,)/v/n. Although these
estimators will not, in general, be consistent for Fy and Ao themselves, they will produce

consistent estimators of projectors M g, and Mz . Let

~ 1 ~7T ~
~ 1 ~T 2 ~
:ﬁx (MF®MK)2(MF®MK)X7



where 3 = (I ® Q)T (vec(é)vec(é)T)(IT ® Q) and & := (Y — X - B)Mﬁ, .

Proposition 8. Under Assumptions MD, CS, AE, AD, and IF, as n — oo with T >
Thin fized,

1D — DJl2 = 0,(1)

IV = Vl2 = 0p(1).

5.1.2 Inference under Large n, Large T

Under an asymptotic where n,7 — oo and T/n — v € (0,00), the TLS estimator
is asymptotically biased. This subsection shows that this bias can be consistently
estimated and a bias-corrected TLS estimator can be constructed. This, in combi-
nation with consistent estimators of the asymptotic covariance matrices, paves the
way for asymptotically valid inference. Consider a singular value decomposition (Y —
X .3 = Z;‘FZI siupv, with singular values sp < ... < s;. Then define F =

(811)1, . 73R0’UR0)/\/ﬁa

Di= &' (MyoM;)®

~ 1 ~T < ~

V:ﬁx (MF®MK)2(MF®MK)X

(1) 1 x AT A 2T 2 _I:T
U = (S e M X F(E R A AR )
@ L G SEE A AR XMl
Yy = mtl‘( (F( ) (A A) kMg @ ITk)),

where 3 = (IT ® Q)T (vec(é)vec(&) ) (IT @ Q) and & = (Y — X - B)M .

Proposition 9. Under Assumptions MD, CS, AE, AD, and IF, as n,T — oo with
T/n—~ € (0,00),

19" — W]z = 0,(1)
19 — @]z = 0,(1)

|D — DIl = 0,(1)
(1)

|V =V = Op(1).
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5.2 Estimating the Number of Factors

The result established in Section 3.1 demonstrates that the TLS estimator will remain
consistent with the number of factors overestimated. However, the asymptotic distribu-
tion of the estimator is characterised under the assumption that R, = Ry, and therefore
where the true number of factors is not known in advance, it is necessary to estimate
this from the data before proceeding with inference. Moreover, overestimation of the
number of factors will typically lead to a loss of efficiency in finite samples and therefore
it is still desirable to input the correct number of factors even if interest lies primarily
in point estimation.””> One approach to detecting this number involves first estimating
the coefficients with the number of factors overestimated, and using these estimates to
construct a pure factor model. Then, methods devised to detect the number of factors
in a pure factor model can be applied. Examples of these detection methods include Bai
(2003), Onatski (2009), and Ahn and Horenstein (2013). This section focuses on one of
these, the eigenvalue ratio test of Ahn and Horenstein (2013), and considers how this
method can be applied to detect the number of factors in the present context.

Let o, be a sequence depending on n (and possibly also T') that tends towards zero.

Define
* I 1% > A\ (v A 2
(= n—T(Y—X-,B) (Y—X-B>+gnIT : (5.1)
that is, p is the r-th largest eigenvalue of the bracketed matrix on the right. Thereafter
let
EigR(r) = ’I:T forr=1,...,7 —1.
/“”r+1

The main departure from the original test described by Ahn and Horenstein (2013) is the
addition of the matrix g2 I'. This is used to control the rate at which the eigenvalues of
the matrix in (5.1) can approach zero. Intuitively, the idea behind the eigenvalue ratio
test is that the first Ry eigenvalues of the matrix (nT)~ (¥ — X -8)T(Y — X - 3) should
be of a similar magnitude and large, while the remaining (7' — Ry) should be of a similar

magnitude but small. As such, the largest ratio between consecutive eigenvalues should

25In particular Lu and Su (2016) provide further discussion of this issue, as well as an alternative
way to proceed.
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reveal the true number of factors. Placed into the present context, Ahn and Horenstein

(2013) study the model with B, = 0, i.e.,
Y = AoF| +e,

where the properties of the (T — Ry) smallest eigenvalues of the matrix (nT)~'Y 'Y
can be deduced through the properties of the singular values of the error €. In partic-
ular, under certain conditions, the smallest eigenvalues can be shown to be similar in

magnitude. However, in this context the constructed factor model takes the form
Y = AgF] + & with E=X-(By—B)+é

It is more difficult to establish the properties of the singular values of the transformed
error & without imposing further restrictions, in addition to which the term X - (By— B)
now also appears.’® Instead, the sequence o, acts to regularise the eigenvalues and
thereby avoids the need to impose more stringent conditions. In aid of the following let

1

(nT) 2]l = Op(rar).

Proposition 10. Assume ||8—Boll2 = Op(rnr) and o1, 0n — 0 with o 'rpyr = O(1) as
n — 0o, with T > Tyin fized or T — oco. Moreover, assume Ry > 1. Under Assumptions
MD and AE, as n — oo, with T > Ty, fized or T — oo,

Pr( max EigR(r)=Ro) — 1. (5.2)
( )

1<r<T—-1

Following Ahn and Horenstein (2013), the possibility of Ryp = 0 can be accommo-
dated by introducing a ‘mock eigenvalue’. For example, set pf = g,. If Ry > 0 then
w /s = 0p(1), while if Ry = 0, ps/ut = Op(0,1)." Notice also that o, lr,r = O(1)
allows for o, '7,7 = 0(1) and therefore Proposition 10 only requires that o, diminish
no faster than r,7. For example, one can establish ||€]j2 = OP(T%) under Assumption
EC or ED, and therefore g,, = T1 /+/n would be permissible provided T' = 0(n?), which

includes both where T is fixed, and where n,T — oo and T'/n — v € [0, 0).

26For example, if € is assumed to be subgaussian then the results of Vershynin (2012) can be applied
to establish properties of the singular values of €.

2T An alternative means of detecting the correct number of factors can be based on the J-statistic
described in Higgins (2023).
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5.3 Dynamic Model

The TLS estimator can also be applied to estimate models in which lagged outcomes

appear as regressors. To formalise this, consider the model

Y =a)Y 1 +X Byg+AFg +¢

= Z -0y + AoF} +¢,

where 01 = a9, Z1 =Y _1 = (Yo,---,Y7_1), and Oy 1 = Bok, ZLry1 = Xy, for
k=1,...,K. Let & denote o(X1,... ,XK,QO,AO,FO). Moreover, let w7 bea J x 1
vector of all zeros, except the first element which equals to 1, and W be a T x T
shift matrix which consists of zeros everywhere, except those elements directly above
the main diagonal which equal to 1, G(a) = (I — aW)" W, G = G(ap), g(a) =
(IT+aG(a)) w7, g ==glag), Hy = X -By+yog ' ,and Hyyy == X fork=1,... K.
S = E[vec(e)vec(e) T |Enr], and B¢ = (I ® Q1) Ze(I1 @ Q).

In order to obtain the following result, Assumptions MD, ED, CS, AE, and AD
need to be extended to accommodate lagged outcomes appearing as regressors. These
are referred to as MD* ED*, CS* AE*, and AD*. For the sake of brevity, these are
presented in Appendix E. These extended assumptions are, for the most part, quite
minor modifications. However, it is worth remarking further on Assumption CS*(ii)

which requires

T
5
JGRK-H |I6||2 1 ; < Z:9)'(2- 6)> =00

w.p.a.l as n — oo, with T > T, fixed or T — oo, and where Z-§ = Ef 5ka
An important implication of this is that at least one element of 3, must be nonzero to
ensure that the covariates can be used to construct a valid set of instruments for the

lagged outcome.

Theorem 2. Assume ||ci|a = Op(1).%® Under Assumptions MD*, ED*, CS*, AE*,

and AD¥*, as n — oo,

28¢, is defined in Appendix E.
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(i) with T > Tin fized or T — oo and T'/n — 0,
VnT(6 — 0) % N(0,DVD1),
(ii) with T — oo and T'/n — v € (0,0),
V(6 — 8) + D7 (@ + ) +®) & A0, D7V, DTY),

where

1 -

P = ﬁtr(ﬁs((PFoGMFo +GPp,) ® Irg))mK+1

m.__1 5 z T -1 AT AV-1AT

Uy = mtr(ES(IT®MAOHkF0(FoFo) (Ag Ao) " Ag))
1 = 4,x T~ 1+ T =

) = \/ﬁtr(xs(Fo(FJFo) H(Ag Ao) T A HM g, @ I7k)),

and D, Dy, V, and V4 are defined in Assumption AD*(ii).

The most significant difference when comparing Theorem 2 to Theorem 1 is the
additional bias term 1/)(0). This arises due to the presence of the lagged outcome and is
the analogue of the bias characterised in Moon and Weidner (2017) for the LS estimator.

Comparing the order of the biases:

" o "

) al)
) o(om{ur)).

LS Estimator o, (ﬁ) o, (

TLS Estimator O, < min {ﬁ, \/Z} ) Op<

Thus, it remains the case that the TLS estimator is asymptotically unbiased when
n, T — oo and T'/n — 0, unlike the LS estimator. It is, however, important to recognise
that the nature of the bias %) is somewhat different from that of the other two biases

'l,b(l) and ¢(2). To appreciate this, consider the case in which e;; ~ iid(0, 03), and the
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true factors and loadings take the form of individual effects, that is,

Ao,1
Ao = I fo=1tr.
)\O,n

In this case w(l) = 1/)(2) = 0 since ¥¢ x I,7, leaving the only remaining bias as 1,0(0).
The fact that 1[)(0) remains nonzero highlights that this bias originates from correlation
between the errors and the lagged outcomes, unlike ¢(1) and ¢(2) which arise due to
the properties of the error term itself.

It is also interesting to notice that when the true factors and factor loadings take

the form of individual effects the expression for wgo) collapses to

2
1
70 —tr(Px)tr(Gepes).

5O
! vnT T

A bit of algebra reveals that

which follows because tr(Px) = min{n,TK}. This again highlights the significance of

the transformation Q. Without this

which matches (up to scale) the familiar expression derived in Nickell (1981).
Similar to the result in Proposition 3, it is also insightful to compare the asymptotic
variance of the LS and TLS estimators under homoskedasticity of the errors. Let H1 :=

X By, Hpy1 =X fork=1,...,K, H = (vec(H1),...,vec(H 1)), and define

1 =7 1 -
Dy:=-—7H (Mp, @ Mg )H+ ﬁtr(ze(GGT ® IT)) TR 41T fey

_ 1 -7 _ 1
Dyrsi=—-H (Mp, ® Ma,)H + n—Ttr(Zg*(GGT @ 1)) TR 41T i,

with £ = 0(X1,..., Xk, Yy, Ao, Fo) and g+ == E[vec(e)vec(e) T |E%].

Proposition 11. Assume g = Zg- = 03l.7, |yollz = Op(v/n), and there exist
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nonstochastic matrices Dy and Dy s, such that D 2, D; and Dy 15 2, Dy 1s as
n, T — oo with T/n — v € (0,00), and the eigenvalues of Dy and Dy s are bounded

away from zero and from above by a constant. Moreover, assume

avar(vVnT (Otrs — 0p)) = 08113)11

avar(VnT (s — 69)) = 03D} 1,
where avar(-) denotes asymptotic variance. Then
avar(vV/nT (Otrs — 600)) = avar(vVnT (s — 0p)).

In this case one can decompose

_ _ 1 _
D,y s—D,= ﬁ?{ (MFo ® (PAO - PPxA()))%
2
of
+ n—%tr((GGT ® M:x))TrK+17T§+1. (5.5)

The first term in the above is analogous to (3.5) and reflects the information lost in
transforming the factor loadings. The second term in (5.5) reflects information in the
covariates that is lost by transforming the model through Q. For the covariates X
which are strictly exogenous, there is no loss of information. For lagged outcomes on

the other hand, information may be lost. Indeed, one can establish that

2

g
n—%tr((GGT ® Mx))ﬂ'KHﬂ'}T(H = 0.

When the model includes lagged outcomes it becomes more difficult to compare the
efficiency of the RS, ALS and TLS estimators in the manner of Section 4. In this event
the TLS estimator uses only a subset of the available moment conditions. One would,
therefore, expect there to be cases where the TLS estimator is less efficient than the RS

and ALS estimators.
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6 Simulations

6.1 Short Panel Exercise

This first exercise compares the performance of the TLS estimator with alternatives in

the context of a short panel. Outcomes are generated according to
Y = B01X1+ Bo2Xa2+ AgF| +e,

with fBp1 = 1 and Bp2 = —1. The covariate X is generated with elements drawn
from the standard normal distribution. The covariate Xo = AgF J + €, where Ry = 2,
and Ao, for, and € are drawn independently from the standard normal distribution.
Note that the factors and loadings which enter into X, are the same as those that
appear in the outcome equation. For the error in the outcome equation, first a variable
ui is generated as u; = uj; X |[fo¢lla where uj, are independent over i and ¢ and
normally distributed with a mean of zero and variance drawn uniformly from the interval
[0.5,1.5]. Thereafter, the errors are generated according to €; = ¢ej;—1 + uy with
¢ = 0.5 and ;9 = 0. In this way the errors exhibit both conditional and unconditional
heteroskedasticity, as well as serial correlation.

Table 1 below displays the empirical bias and empirical standard error of the LS
estimator, the TLS estimator, and the one-step ALS estimator described in Section 4.2.

Throughout R, = Ry and the number of draws is 10, 000.%”

Gpecifically, the empirical bias is computed by averaging v nT(ﬁ — B,) over Monte Carlo draws.
The empirical standard error is computed by taking the standard deviation of vnT' (8 — 3,) over Monte
Carlo draws.
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Table 1: Empirical Bias (Empirical Standard Error)

B1 B2
n\T| 6 9 12 6 9 12

100 0.004 -0.002 0.017 6.417 6.185 4.395
(1.393) (1.377) (1.356) | (5.405)  (6.047) (5.563)
0.019 0.004 -0.003 9.789 8.962 5.382

LS 250
(1.358) (1.334) (1.338) | (8.091) (8.757) (6.915)
500 -0.013 -0.019 -0.023 | 13.782 12.008 6.614
(1.349) (1.347) (1.329) | (11.292) (11.849) (8.171)
100 0.010 -0.004 0.021 0.349 0.232 0.214
(1.474) (1.396) (1.369) | (1.933) (1.545) (1.450)
0.014 -0.004 0.009 0.088 0.053 0.034

TLS 250
(1.454) (1.373) (1.364) | (1.522) (1.392) (1.370)
500 -0.011 -0.019 -0.021 0.030 0.028 0.013
(1.455) (1.385) (1.353) | (1.477)  (1.395) (1.355)
100 0.031 0.003 0.019 0.356 0.173 0.191
(2.164) (2.531) (2.928) | (2.637) (2.709) (3.117)
0.016 0.019 -0.012 0.093 0.032 0.028

ALS 250
(2.126) (2.548) (2.870) | (2.224)  (2.528) (2.868)
500 -0.012 -0.008 -0.014 0.025 0.041 -0.009
(2.140) (2.516) (2.839) | (2.140) (2.546) (2.884)

Since the first regressor is uncorrelated with the factors and the loadings, all three
of the estimators for 1 display small bias. On the other hand, for o the LS estimator
exhibits substantially more bias than the TLS and ALS estimators, with this becoming
more acute with 7" fixed and n increasing. This is unsurprising, since the LS estimator is
known to suffer from asymptotic bias of order n/T. When comparing the TLS and ALS
estimators, their bias is small and overall quite similar. Turning to the standard error,
for 1 the LS estimator has a smaller standard error than the TLS estimator, though
their values become more similar for larger values of n and T". This might be expected
given Proposition 3. For s they are markedly dissimilar, and indeed the standard
error of the LS estimator becomes increasingly large with T' fixed and n increasing.
Comparing the TLS estimator with the ALS estimator, the latter consistently exhibits
a larger standard error. This supports the findings of Proposition 7. Table 2 below
presents empirical coverage probabilities of a 95% two-sided confidence interval. For

the TLS estimator these are computed using the fixed-T' covariance matrix estimator

37



described in Section 5.1.1. For the LS estimator these are computed using the covariance
matrix estimator described in Moon and Weidner (2017) with the bandwidth parameter

set equal to |log(T")].

Table 2: Empirical Coverage Probability of a 95% Confidence Interval

B1 B
n\T 6 9 12 6 9 12

100 | 0.887 0.910 0.924 | 0.221 0.303 0.456
LS 250 | 0.901 0.928 0.928 | 0.122 0.187 0.347
500 | 0.903 0.924 0.928 | 0.067 0.101 0.221
100 | 0.942 0.941 0.944 | 0.892 0.923 0.928
TLS | 250 | 0.946 0.950 0.946 | 0.940 0.948 0.947
500 | 0.948 0.949 0.950 | 0.945 0.947 0.952
100 | 0.940 0.947 0.944 | 0.910 0.937 0.941
ALS | 250 | 0.948 0.945 0.948 | 0.943 0.947 0.947
500 | 0.947 0949 0.951 | 0.946 0.945 0.950

As one would expect, the coverage probabilities of the LS estimator are poor when
T is small, and only start to improve when T increases. Indeed, for B2 the coverage
probabilities quickly decline with T fixed and n increasing. Both the ALS and TLS
estimators exhibit good coverage, with these quickly approaching their nominal value
with T" fixed and n increasing.

Table 3 below shows the percentage of times the eigenvalue ratio test described in
Section 5.2 correctly detects the true number of factors in the model. This entails first
estimating the model with the number of factors overestimated (R. = 5 is used in
simulations), after which a pure factor model can be constructed, to which the test can

then be applied. The parameter g,, is set equal to T /.30

Table 3: Percentage of Estimated R equal to Rg

n\T| 9 12 15
100 | 75.84 83.59 87.33
250 | 89.51 95.63 97.37
500 | 95.03 98.26 99.38

30The values of T are slightly increased to ensure the condition T' > Ty is satisfied.
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Overall the test performs well, with the error rate decreasing as either n or T in-

creases.

6.2 Large Panel Exercise

This second exercise compares the LS and TLS estimators, as well as their bias-corrected
counterparts, in a setting where both n and T are large. Outcomes are generated

according to
Y =Y _1+ ﬁo,le + 60,2X2 + AOF(T +e€,

with ag = 0.5, Bp,1 = 1 and Bp2 = —1. The regressors, the factors, the loadings, and the
covariates are generated in the same manner as in the previous design. The error is also
generated as previously, but with the autoregressive parameter ¢ = 0. Table 4 below
presents empirical bias and empirical standard error for the LS estimator (LS), the bias-
corrected LS estimator (LS-BC), the TLS estimator (TLS), and the bias-corrected TLS
estimator (TLS-BC). The bandwidth parameter for both the LS and TLS estimators is

set equal to 1.

39



Table 4: Empirical Bias (Empirical Standard Error)

a b1 B2

n\T 10 25 50 10 25 50 10 25 50
100 -0.031 -0.006 0.003 | -0.026 -0.012 -0.007 | 0.125 0.050 0.021
(0.730)  (0.559) (0.529) | (1.143) (1.048) (1.027) | (1.152) (1.063) (1.046)
LS 950 -0.054 -0.008 -0.002 | -0.018 0.000 0.001 0.106 0.039 0.018
(0.909) (0.583) (0.534) | (1.124) (1.050) (1.025) | (1.117) (1.064) (1.026)
500 -0.057 -0.012 -0.012 | -0.063 0.002 0.006 | 0.111 0.030 0.023
(1.150) (0.647) (0.544) | (1.138) (1.032) (1.014) | (1.132) (1.055) (1.021)
100 -0.017 -0.003 0.004 | -0.008 -0.010 -0.007 | 0.107 0.048 0.021
(0.594)  (0.534) (0.524) | (1.142) (1.047) (1.027) | (1.151) (1.063) (L.046)
LS.BC 950 -0.020 -0.005 -0.001 | 0.009 0.003 0.002 0.079 0.036 0.017
(0.611) (0.527) (0.518) | (1.123) (1.050) (1.025) | (1.116) (1.064) (1.026)
500 -0.023 -0.007 -0.009 | -0.025 0.006 0.007 | 0.073 0.026 0.022
(0.648) (0.533) (0.512) | (1.135) (1.032) (1.014) | (1.120) (1.055) (1.021)
100 -0.021 -0.002 0.003 | -0.011 -0.011 -0.007 | 0.033 0.026 0.021
(0.746) (0.603) (0.520) | (1.143) (1.047) (1.027) | (1.142) (1.061) (1.046)
TLS 950 -0.005 -0.006 -0.002 | 0.015 0.002 0.001 0.019 0.013 0.006
(0.770)  (0.638) (0.589) | (1.124) (1.050) (1.025) | (1.110) (1.063) (1.026)
500 -0.010 -0.013 -0.012 | -0.015 0.006 0.007 | 0.023 0.007 0.012
(0.772)  (0.660) (0.608) | (1.136) (1.032) (1.014) | (1.125) (1.054) (1.021)
100 -0.015 0.000 0.004 | -0.006 -0.010 -0.007 | 0.027 0.025 0.021
(0.730) (0.595) (0.524) | (1.143) (1.047) (1.027) | (1.142) (1.061) (1.046)
TLS.BC 950 0.001 -0.005 -0.001 | 0.019 0.003 0.002 0.016 0.013 0.006
(0.767)  (0.635) (0.585) | (1.124) (1.050) (1.025) | (1.110) (1.063) (1.026)
500 -0.007 -0.012 -0.011 | -0.012 0.007 0.007 | 0.020 0.007 0.012
(0.770)  (0.659) (0.606) | (1.136) (1.032) (1.014) | (1.125) (1.054) (1.021)

Overall the bias for the TLS estimator is smaller than that of the LS estimator, both
with and without bias correction. This is particularly notable for 8 where, owing to the
correlation between X, the factors, and the loadings, the LS estimator exhibits sizeable
bias, particularly at smaller values of T'. As in the previous design, it is also found that
as sample size increases the standard error of the LS and TLS estimators generally
becomes similar. Interestingly, for the autoregressive parameter «, the standard error
of both estimators is observed to increase with T' fixed and n increasing, and decrease
for n fixed and T increasing. For the TLS estimator, this is explained by the presence
of variance components associated with the lagged outcomes which are of order T /n.?!

When both n and T are large, these reduce the standard error, but when T is fixed

31These are Y® and Y@, see Appendix E.
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and n is large, these additional components diminish resulting in an increased standard
error.?’

Table 5 below presents empirical coverage probabilities of a 95% two-sided confi-
dence interval. Two variants are displayed for the TLS estimator: TLS (Long) which is
computed using the large-T' covariance matrix estimator described in Section 5.1.2, and

TLS (Short) which uses the fixed-T' covariance estimator described in Section 5.1.1. In

both cases bias correction is performed using the results in Section 5.1.2.

Table 5: Empirical Coverage Probability of a 95% Confidence Interval

o o3l B2

n\T 10 25 50 10 25 50 10 25 50
100 0.842 0.920 0.937 | 0.921 0.941 0.944 | 0.914 0.933 0.937
LS 250 | 0.744 0.913 0.934 | 0.924 0.940 0.946 | 0.926 0.935 0.945
500 | 0.630 0.873 0.929 | 0.920 0.943 0.945 | 0.922 0.937 0.947
100 0.911 0.932 0.940 | 0.921 0.941 0.943 | 0.915 0.933 0.938
LS-BC 250 0.904 0.937 0.942 | 0.924 0.940 0.946 | 0.924 0.935 0.945
500 0.885 0.938 0.945 | 0.921 0.942 0.946 | 0.923 0.938 0.947
100 0.916 0.933 0.937 | 0.923 0.941 0.944 | 0.921 0.934 0.937
(Eol;lsg) 250 0.919 0.938 0.941 | 0.924 0.939 0.946 | 0.928 0.935 0.945
500 | 0.926 0.938 0.943 | 0.921 0.943 0.946 | 0.926 0.938 0.947
100 | 0.919 0.937 0.940 | 0.923 0.940 0.943 | 0.921 0.934 0.938
rl;%g;l]gg 250 0.921 0.940 0.943 | 0.924 0.939 0.946 | 0.928 0.935 0.945
500 0.927 0.939 0.944 | 0.921 0.943 0.946 | 0.926 0.938 0.947
100 0.939 0.937 0.937 | 0.944 0.945 0.943 | 0.942 0.942 0.940
(S’I};I(;Et) 250 0.944 0.946 0.944 | 0.948 0.947 0.949 | 0.949 0.943 0.948
500 0.950 0.946 0.946 | 0.946 0.952 0.950 | 0.949 0.946 0.951
100 | 0.939 0.940 0.942 | 0.944 0.945 0.943 | 0.942 0.942 0.940
T(é}?(;ﬁgj 250 | 0.943 0.947 0.947 | 0.948 0.947 0.949 | 0.949 0.943 0.948
500 0.951 0.948 0.947 | 0.946 0.952 0.950 | 0.949 0.946 0.951

For the autoregressive parameter «, the coverage of the LS estimator declines with
T fixed and n increasing. This is expected due to bias of order n/T from which the
LS estimator is known to suffer. The bias-corrected LS estimator performs better, with

coverage being much closer to its nominal value. However, this also performs poorly at

32In unreported additional simulation output which includes n = 1000 and n = 2500, the standard
error of the TLS estimator is seen to stabilise, while it continues to increase for the LS estimator.
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smaller values of T', in which case coverage is also observed to decline with T" fixed and
n increasing. For smaller values of T' the TLS (Long) estimator performs better than
the LS estimator. This is particularly noticeable for the autoregressive coefficient where
the coverage probabilities of the TLS estimator improve with 7' fixed and n increasing.
Overall the LS and LS-BC estimators require larger values of T" in order to attain nominal
coverage. When both n and T are large, the coverage probabilities for the LS and TLS
(Long) estimators are broadly similar, with and without bias-correction. Surprisingly,
the TLS (Short) estimator outperforms both the LS and TLS (Long) estimators, when
n is large and 7' is small, and also where both n and T are large.

Finally, Table 6 below shows the percentage of times the eigenvalue ratio test cor-

rectly detects the true number of factors. As previously, the parameter g, is set equal
to T /V/n.

Table 6: Percentage of Estimated R equal to Ry

n\T| 10 25 50
100 | 84.59 98.97  99.94
300 | 94.50 99.96 100.00
500 | 97.81 99.99 100.00

Similar to the results for the static model, the test performs well with the error rate
declining with either n or T increasing. The overall error rate in this second design is

smaller due to the larger values of T

7 Conclusion

This paper has introduced a method to estimate linear panel data models with inter-
active fixed effects which has been shown to be consistent and asymptotically unbiased
when n is large and T fixed, and also when both n and T are large, provided T'/n — 0.
This stands in contrast to the usual case where the LS estimator is generally inconsistent
when n is large and T is fixed, and suffers from asymptotic bias when both n and T
are large. Careful study of this estimation approach has also revealed interesting con-
nections between the LS estimator and several method of moments-based approaches,

bridging the gap between what are, at present, two quite separate literatures.
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