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Abstract

This paper studies the estimation of a linear panel data model with interactive

fixed effects. A transformation is introduced which, after having been applied,

renders the least squares (LS) estimator of Bai (2009) consistent and asymptotically

unbiased when n is large and T is fixed. This is termed the transformed least squares

(TLS) estimator. Going further, these properties are shown to also carry over to

the large n, large T setting, provided T/n → 0. This contrasts sharply with the

usual case, where the LS estimator is, in general, inconsistent when n is large and

T is fixed, and is asymptotically biased when both n and T are large.
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1 Introduction

1.1 Model

This paper contributes to the extensive literature on linear panel data models with in-

teractive effects. These models have proven to be very popular since, in many situations,

the existence of such structures is well motivated; for example, arising due to unobserved

heterogeneity across individuals, or exposure to common shocks. The model studied in

this paper assumes that, in a panel with entries indexed i = 1, . . . , n and t = 1, . . . , T ,

outcomes are generated according to

yt =Xtβ +Λf t + εt, (1.1)

where yt and εt are n × 1 vectors of outcomes and error terms, respectively, Xt is an

n×K matrix of covariates, Λ is an n×R matrix of time-invariant factor loadings, and

f t is an R× 1 vector of time-varying factors. It is assumed that both the outcomes and

the covariates are observed by the econometrician, while the factors, the loadings, and

the error terms are not. The parameter of interest in this model is the K × 1 vector β.

This model can be seen as a generalisation of familiar models of additive effects, such

as individual, time, or group effects. For example, individual and time effects nest as a

special case of (1.1) in which

Λ =


λ1 1
...

...

λn 1

 , f t =

 1

ft

 ,

that is, where a vector of heterogeneous loadings is interacted with a unit factor, and

where a vector of unit loadings is interacted with a time-varying factor. More generally,

however, with interactive effects, no restrictions are placed on the factors or the load-

ings to be multiples of unit vectors, or otherwise, and both are permitted to be fully

heterogeneous.

The main obstacle to consistent estimation of β arises in situations where the unob-

served interactive effects are somehow correlated with covariates in the model. In this

event, an endogeneity problem arises, and, as a result, naive estimation approaches will

typically be inconsistent. One possible remedy to this is to treat the components of the
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factor term as additional parameters to estimate, known as the fixed effects approach.

However, treating both the factors and loadings as fixed effects gives rise to incidental

parameters in both dimensions of the panel, which, in turn, generates complications for

the estimation of the parameter of interest β. These complications arise as a conse-

quence of the incidental parameter problem (Neyman and Scott, 1948), which describes

the situation where the presence of high-dimensional (nuisance) parameters adversely

impacts the estimation of common parameters in a model. In long panels this prob-

lem can, to some extent, be overcome, and, in particular, it has been shown that the

least squares interactive fixed effects (LS) estimator that treats both the factors and the

loadings as fixed effects is consistent when both n and T are large, though it typically

suffers from asymptotic bias (Bai, 2009; Moon and Weidner, 2017). It is, however, in

short panels that the incidental parameter problem is felt most acutely, and when n is

large and T fixed the LS estimator is inconsistent, in general.

This paper proposes a simple remedy to this problem, by introducing a transforma-

tion of the model, which, after having been applied, renders the LS estimator consistent

when n is large and T is fixed. This is termed the transformed least squares interactive

fixed effects (TLS) estimator. In contrast to typical approaches, this transformation is

not designed to purge the incidental parameters from the model entirely. Instead, the

aim is to reduce the dimension of the model, and, in doing so, relieve it of incidental

parameters in the cross-section. The TLS estimator retains many of the most attractive

features of the LS estimator, including certain robustness properties and, crucially, the

ability to profile out the factors and the loadings from the objective function, and to

reduce estimation to a univariate optimisation. And yet, unlike the LS estimator, the

TLS estimator is shown to not only be consistent, but also asymptotically unbiased

when n is large and T is fixed.

A deeper understanding of the relationship between the LS and TLS estimators

comes from also studying the TLS estimator when both n and T are large. This analysis

reveals that the TLS estimator remains consistent and, indeed, remains asymptotically

unbiased, provided T/n → 0. However, when T/n → γ ∈ (0,∞) it exhibits asymptotic

bias analogous both in its origin and its functional form to that of the LS estimator.

Inspection of the resultant expressions establishes that the bias of the TLS estimator is

of a lower order than that of the LS estimator. And yet, at the same time, comparison

of the asymptotic variance of the two estimators indicates that this is achieved at the
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expense of efficiency, with the former being less efficient than the latter, at least in

some circumstances. Overall the results of this paper point to a bias-variance trade-off

between the two estimators, which is most apparent, and most important, when n is

large and T is fixed, and more generally when T is small relative to n.

1.2 Related Literature

In light of the fixed T -inconsistency of the LS estimator, alternative estimation ap-

proaches have been considered which are applicable when n is large and T is fixed. Yet

unlike in large panels, where little if anything need be assumed about the relationship

between the factors, the loadings, and the covariates, many, if not most of the fixed T

approaches rely on the possibility of correlation existing between these, and indeed lean

into this as a means to derive alternative estimators. In this line of research, approaches

may broadly be placed into one of two groups: those that impose a specific functional

form for the relationship between the factor term and covariates, and those that do not.

The first group consists of common correlated effects (CCE) approaches, which orig-

inate from the seminal work of Pesaran (2006). At the core of this approach is an

assumption that at least some model covariates also admit a factor decomposition, such

that the factors can be estimated by taking cross-sectional averages of these covariates.

This ultimately gives rise to estimators that are often consistent when n is large and T

is fixed, as well as when both n and T are large. The properties of this approach have

been extensively studied, e.g., in a likelihood setting (Bai and Li, 2014), with dynamic

regressors (Everaert and Groote, 2016), with an unknown number of factors (Wester-

lund and Urbain, 2015). Other contributions in this line of research include Westerlund

(2020), De Vos and Everaert (2021), and Juodis and Sarafidis (2022b). Though these

methods are often easy to implement, the imposition of a particular relationship between

the factors and the covariates can be restrictive, and whether or not this is a reasonable

assumption is largely a matter of context.

This leads naturally to the second group of methods that seek to exploit possi-

ble correlation between observed covariates and the factor structure, without imposing

any particular functional form for this relationship. This second group might sim-

ply be termed correlated effects approaches, and includes quasi-difference approaches

(Holtz-Eakin et al., 1988; Ahn et al., 2001, 2013), the instrumental variables estimators
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of Robertson and Sarafidis (2015), and the hybrid approach of Juodis and Sarafidis

(2022a).1 Though in some sense less restrictive, these estimators are often much more

difficult to implement than are CCE-type estimators, with it being necessary to directly

estimate multiple nuisance parameters alongside the parameter of interest, and in some

cases, to do so from a set of highly non-linear moment conditions. As a consequence,

these estimators appear less frequently in applied work.2

The TLS estimator follows in this second line of research, in the sense that it does not

impose a particular functional form for the relationship between the factors, the loadings,

and the covariates. It does not, however, share the complexity of those approaches, as

it consists of a univariate optimisation which depends only on the parameter of interest,

and not (directly) on nuisance parameters arising through modelling the factor structure

in the error. Nonetheless, subsequent sections show that the TLS estimator is closely

related to two of these estimators in particular: the quasi-difference estimator of Ahn

et al. (2013) (ALS), and the FIVU estimator of Robertson and Sarafidis (2015) (RS). A

detailed comparison of these approaches reveals both similarities and subtle differences

between the LS and TLS estimators, and comparable one-step ALS and RS estimators.

This is an interesting finding, and goes some way to bridging the gap between the least

squares and method of moments-based approaches to panel models with interactive

effects.3

1.3 Outline

Section 2 sets out the estimation approach, introducing the transformation and providing

some intuition behind the key differences that lie between the LS and TLS estimators.

Section 3 establishes the asymptotic properties of the TLS estimator, including consis-

tency and asymptotic normality, and draws comparisons with the corresponding results

for the LS estimator. Section 4 examines the relationship between the TLS estima-

tor and some alternative estimators, under a large n, fixed T asymptotic. Section 5

collects additional considerations, including inferential procedures, a method to detect

the correct number of factors, and an extension to dynamic models. Section 6 con-

tains simulations, and Section 7 concludes. Proofs of all results are to be found in the

1Freyberger (2018) also falls under this heading.
2Hsiao et al. (2022) describe an alternative approach also applicable to short panels.
3This paper is also closely related to the seminal works of Balestra and Nerlove (1966), Nickell

(1981), and Chamberlain and Moreira (2009).
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Supplementary Material.

1.4 Notation

Throughout the paper all vectors and matrices are real unless stated otherwise. For

an n × 1 vector a with elements ai, ∥a∥2 :=
√∑n

i=1 a
2
i . Let A be an n × m matrix

with elements Aij . When m = n, and the eigenvalues of A are real, they are denoted

µmin(A) := µn(A) ≤ . . . ≤ µ1(A) =: µmax(A). The spectral norm and Frobenius norm

of A are denoted ∥A∥2 :=
√
µmax(A

⊤A) and ∥A∥F :=
√
tr(A⊤A), respectively. The

notation ∥A∥max is used to denote max1≤i≤nmax1≤j≤m |Aij |. Let PA := A(A⊤A)+A⊤

and MA := In −PA, where In is the n× n identity matrix and + denotes the Moore-

Penrose generalised inverse. An n×1 vector of ones is denoted ιn. For a matrix A which

potentially has an increasing dimension, Op(1) is used to indicate that ∥A∥2 = Op(1)

and, similarly, Op(1) signifies that ∥A∥2 = Op(1). Throughout, c is used to denote some

arbitrary positive constant. The operation vec(·) applied to an n×m matrix A creates

an nm× 1 vector vec(A) by stacking the columns of A.

2 TLS Estimator

Treating both the factors and the loadings as additional (nuisance) parameters, the

LS estimator of (1.1) is obtained as the values (β,Λ,F ) which minimise the sum of

squared residuals. In seminal work, Bai (2009) studies the properties of this estimator

and shows that with strictly exogenous covariates the LS estimator of β is consistent

when the number of factors is known and both n and T are large. Further results have

been provided by Moon and Weidner (2015, 2017) who demonstrate that the estimator

remains consistent with the number of factors unknown, but not underestimated, and

also with the possible inclusion of predetermined regressors, including lagged outcomes.

These authors establish the asymptotic properties of the LS estimator and, in particu-

lar, document asymptotic biases that arise in the presence of cross-sectional and serial

dependence and/or heteroskedasticity, and due to inclusion of predetermined regressors.

These biases originate from the incidental parameter problem and ultimately cause the

LS estimator to be inconsistent when T is fixed. Yet, as is shown subsequently, by first

transforming the model, the LS estimator can be rendered consistent and asymptotically

unbiased when n is large and T is fixed.
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2.1 Transformation

It is useful to begin by re-writing the model in matrix form. Let the n × T matrix

Y := (y1, . . . ,yT ),Xk be the n×T matrix containing observations of the k-th covariate,

and the T × R matrix F := (f1, . . . ,fT )
⊤. The shorthand X · β is used to denote∑K

k=1 βkXk. With this notation, the model can be written more succinctly as

Y =X · β +ΛF⊤ + ε. (2.1)

Define the n × TK matrix X := (X1, . . . ,XK). It is assumed that X has full

rank, i.e., rank(X) = min{n, TK}.4 Take a singular value decomposition X = USV ⊤,

where the matrices of singular vectors U and V are n × rank(X) and TK × rank(X),

respectively, and the diagonal matrix of singular values S is rank(X)× rank(X). Define

the transformation matrix QX := UV ⊤, with which the following transformed variables

can be defined:

Ỹ := Q⊤
XY ,

Λ̃ := Q⊤
XΛ,

X̃k := Q⊤
XXk,

ε̃ := Q⊤
Xε,

in which case premultiplying (2.1) by Q⊤
X yields the transformed model

Ỹ = X̃ · β + Λ̃F⊤ + ε̃. (2.2)

The key properties of QX are presented in Appendix A.1. Intuitively, the action of

QX is most important when TK < n, in which case QX acts to reduce the model

into the TK-dimensional subspace spanned by the columns of X. In particular, the

dimension of the transformed factor term Λ̃F⊤ will no longer depend on n, whereupon

the model is relieved of incidental parameters in the cross-section.5 A second important

feature of QX is that transforming the model leads to no loss of information in the

covariates, which is manifest in the property QXQ
⊤
XX = X.6 Finally, if the covariates

4If X is not full rank, or indeed, if one chooses to specify X using some, but not all of the columns
of the covariates, subject to the satisfaction of the requisite conditions, the TLS estimator will retain
its essential properties.

5Reducing the dimension of the factor term may relieve the model of incidental parameters in the
cross-section, but the effect of these parameters does not disappear entirely. Their effect is still present
through Λ̃, the part of the factor loadings that remains, which manifests itself as an additional incidental
parameter in the time dimension; see Section 3.4.

6See Appendix A.1.
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used in the construction of QX are strictly exogenous, under quite general conditions,

the transformation serves to reduce the order of the error term which, ultimately, is key

to estimating (2.2) when n is large and T is fixed.7

2.2 Principal Components

The underlying mechanics of the LS estimator are most easily understood with the

intuition that, given the factors and the loadings, the coefficients can be estimated by

a linear regression, and, similarly, given β, estimating the factors and loadings is a

standard principal component problem. Where n is large and T is fixed it is the latter

step that proves to be challenging; in particular, estimating the n-dimensional factor

loadings. For this reason it is useful to consider the factor term in isolation in order to

demonstrate the key differences that lie between estimation of the original model, and

of its transformed counterpart.

Assume that the true β is observed, and that both Λ and F have full column rank.

Then Y −X ·β = ΛF⊤ + ε has a pure factor structure. Decompose the factor term as

ΛF⊤ = Λ̇Ḟ
⊤
, where Λ̇ and Ḟ are n×R and T ×R matrices, respectively, which satisfy

n−1Λ̇
⊤
Λ̇ = IR and Ḟ

⊤
Ḟ is diagonal.8 Consider the following:

1

nT
(Y −X · β)(Y −X · β)⊤ Λ̇√

n

=
1

nT
ΛF⊤FΛ⊤ Λ̇√

n
+

1

nT

(
εFΛ⊤ +ΛF⊤ε⊤ + εε⊤

) Λ̇√
n

=:
Λ̇√
n

(
1

T
Ḟ

⊤
Ḟ

)
+ e(Λ̇,Λ,F , ε).

Given that n−1Λ̇
⊤
Λ̇ = IR and Ḟ

⊤
Ḟ is diagonal, then, absent of the second term on the

right, the columns of Λ̇ would be eigenvectors of (nT )−1(Y −X ·β)(Y −X ·β)⊤. Where

both n and T are large, several authors have shown that, in spite of this second term,

estimating Λ̇ in this manner may still be possible. For example, under the condition

∥ε∥2 = Op(
√

max{n, T}) employed in Moon and Weidner (2015), dependence in the

7This paper focuses on the case where the regressors are strictly exogenous, as in Bai (2009). Lagged
outcomes can also be accommodated as is discussed in Section 5.3. If a covariate Xk is endogenous
but valid instruments are available, then those instruments can, in principle, substitute for Xk in the
construction of X. A more complete treatment of the IV setting will be the focus of future work.

8It is straightforward to see that such matrices exist. For example, by the singular value decom-
position, decompose ΛF⊤ = USV ⊤. Let Λ̇ be the R columns of

√
nU associated with the nonzero

singular values, and Ḟ be the corresponding R columns of n− 1
2V S⊤. As the columns of U and V are

orthonormal, it follows that n−1Λ̇
⊤
Λ̇ = IR, Ḟ

⊤
Ḟ is diagonal, and Λ̇Ḟ

⊤
= ΛF⊤.

8



error term is sufficiently limited that, with suitable conditions on the factors and the

loadings, the second term is (uniformly) Op (1) when both n, T → ∞. However, such

arguments typically fail when T is fixed.

Consider instead the transformed model. Let Λ̈ and F̈ be TK×R and T×Rmatrices,

respectively, which satisfy Λ̈F̈
⊤
= Λ̃F⊤, n−1Λ̈

⊤
Λ̈ = IR, and F̈

⊤
F̈ is diagonal.9 Note

that F̈ typically differs from Ḟ . One arrives at a similar expression to before,

1

nT
(Ỹ − X̃ · β)(Ỹ − X̃ · β)⊤ Λ̈√

n

=
1

nT
Λ̃F⊤F Λ̃

⊤ Λ̈√
n
+

1

nT

(
ε̃F Λ̃

⊤
+ Λ̃F⊤ε̃⊤ + ε̃ε̃⊤

) Λ̈√
n

=:
Λ̈√
n

(
1

T
F̈

⊤
F̈

)
+ e(Λ̈, Λ̃,F , ε̃).

Yet now, if the covariates used to construct QX are strictly exogenous, under quite

general conditions, ∥ε̃∥2 = Op(n
1
4

√
T ) from which it follows that, again, with suitable

conditions on the factors and the loadings, the second term in the above is (uniformly)

Op (1) as n → ∞ with T fixed (or indeed T → ∞). As a consequence, it is possible to

estimate the columns of Λ̈ as eigenvectors of (nT )−1(Ỹ −X̃ ·β)(Ỹ −X̃ ·β)⊤. Although

in general Λ̈ will not equal Λ̃, these two matrices will share the same column space

which suffices to control for the term in estimation.

2.3 Objective Function

The transformed model (2.2) can be estimated by minimising the following least squares

objective function:

Q(β, Λ̃,F ) :=
1

nT
tr

((
Ỹ − X̃ · β − Λ̃F⊤

)⊤ (
Ỹ − X̃ · β − Λ̃F⊤

))
. (2.3)

Both the factors and the transformed loadings can be profiled out of (2.3), in which case

one arrives at an objective function involving β alone

Q(β) :=
1

nT

T∑
t=R+1

µt

((
Ỹ − X̃ · β

)⊤ (
Ỹ − X̃ · β

))
, (2.4)

9It is tacitly assumed that rank(ΛF⊤) = rank(Λ̃F⊤).
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that is, the profile objective function involves the sum of the (T−R) smallest eigenvalues

of the right-hand side matrix.10 Using this, the TLS estimator β̂ can then be defined as

β̂ := argmin
β∈Θβ

Q(β), (2.5)

where Θβ denotes a suitable parameter space for β.11,12,13

3 Asymptotic Properties

3.1 Consistency

Throughout the following both Λ and F are treated as fixed parameters in estimation

and the subscript 0 is now introduced to distinguish true parameter values. The following

assumptions are made.

Assumption MD. .

(i) The parameter vector β0 lies in the interior of Θβ, where Θβ is a compact subset

of RK .

(ii) The elements of Xk, Λ0, and F 0 have uniformly bounded fourth moments.

Assumption MD(ii) imposes standard conditions on the moments of the covariates,

the factors, and the loadings. Let CnT denote σ(X1, . . . ,XK), that is, the sigma-algebra

generated by the covariates, and define ΣC := E[vec(ε)vec(ε)⊤|CnT ].

Assumption EC. Conditional on CnT , εit are independent over i, with E[εit|CnT ] = 0,

and E[ε4it|CnT ] uniformly bounded. In addition, the eigenvalues of ΣC are uniformly

bounded away from zero and from above by a constant.

Assumption EC allows for heteroskedasticity (conditional and unconditional) in both

dimensions of the panel, as well as serial dependence. The conditions imposed are weaker

10See equation (3.3) in Moon and Weidner (2015) for details.
11Note that the objective function Q(β) need not be convex in β, and therefore there may exist

local minima. A practical consequence of this is that any optimisation routine should be initialised from
multiple starting values.

12Notice that when TK ≥ n, QXQ
⊤
X = In, and therefore the TLS estimator is equal to the LS

estimator: see Appendix A.1.
13The author is grateful to a referee for pointing out that, with strictly exogenous regressors, the

TLS estimator coincides with an iterative estimator described in Breitung and Hansen (2021), which
the authors refer to as ALS∗. This is based on an iterative procedure detailed in the appendix of Ahn
et al. (2013) as a means to compute their estimator. Neither Breitung and Hansen (2021) nor Ahn et al.
(2013) establish any asymptotic results for this estimator.
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than the assumption that the errors (and typically also the covariates and the loadings)

are identically distributed over i, as is frequently assumed in the literature on short

panels with interactive effects (see, e.g., Ahn et al. (2013) and Robertson and Sarafidis

(2015)). Moreover, it is not required that the error be independent of covariates, the

factors, and the loadings as in, for instance, Bai (2009). In aid of the following let

X̃ · δ :=
∑K

k=1 δkX̃k. Moreover, let Tmin := Re +R0 + 1.

Assumption CS. .

(i) Re ≥ R0 := rank(Λ0F
⊤
0 ), where Re denotes the number of factors used in estima-

tion, and Re and R0 are constants that do not depend on sample size.

(ii) minδ∈RK :∥δ∥2=1

∑T
t=Tmin

µt((nT )
−1(X̃ · δ)⊤(X̃ · δ)) ≥ b > 0 w.p.a.1 as n → ∞,

with T ≥ Tmin fixed or T → ∞.

Assumption CS(i) allows for the true number of factors, R0, to be unknown as long

as the number of factors used in estimation, Re, is no less than R0. This assumption

also formalises the core model assumption that the factor term Λ0F
⊤
0 has a low (relative

to sample size), fixed rank. Assumption CS(ii) is a multicollinearity condition. Notice

that

min
δ∈RK :∥δ∥2=1

T∑
t=Tmin

µt

(
1

nT
(X̃ · δ)⊤(X̃ · δ)

)
= min

Λ̃∈RTK×Re , F∈RT×R0

µmin

(
1

nT
X̃⊤

(MF ⊗M Λ̃)X̃
)
, (3.1)

where X̃ := (vec(X̃1), . . . , vec(X̃K)). Going further, it can be established that

min
δ∈RK :∥δ∥2=1

T∑
t=Tmin

µt

(
1

nT
(X̃ · δ)⊤(X̃ · δ)

)
≥ min

Λ∈Rn×Re , F∈RT×R0

µmin

(
1

nT
X⊤(MF ⊗MΛ)X

)
, (3.2)

where X is defined analogously to X̃ .14 Hence, Assumption CS(ii) is satisfied as long

as there remains a sufficient amount of variation in the regressors after having been

projected orthogonal to arbitrary T ×R0 factors and n×Re loadings. This is analogous

14See Appendix A.2.
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to Assumption A in Bai (2009) and Assumption NC in Moon and Weidner (2015).15

Proposition 1 (Consistency). Under Assumptions MD, EC, and CS, β̂
p−→ β0 as n→

∞, with T ≥ Tmin fixed or T → ∞.

Proposition 1 demonstrates the TLS estimator is consistent as n→ ∞, regardless of

whether T is fixed or T → ∞. This result is obtained allowing for heteroskedasticity and

serial dependence in the error, and as long as the number of factors used in estimation is

no less than the true number. Notice also that no assumptions have been made regarding

the factors and the loadings other than bounded fourth moments; for instance, these

may be strong, weak, or non-existent. Indeed, Proposition 1 neither requires that the

factors or loadings be correlated with the covariates, nor for that matter, uncorrelated

with the error term.16

Proposition 1 can be compared directly to Theorem 4.1 in Moon and Weidner (2015)

which, under similar conditions, provides a consistency result for the LS estimator. Their

result establishes that

∥β̂ − β0∥2 = Op

(
1√

min{n, T}

)
,

with this rate being determined largely by the condition ∥ε∥2 = Op(
√

max{n, T}) (As-

sumption SN(ii)) under which

∥ε∥2√
nT

= Op

(
1√

min{n, T}

)
.17 (3.3)

In similar fashion, the rate obtained in Proposition 1 can be attributed to the quantity

∥ε̃∥2 which plays an analogous role in this paper. Under Assumption EC this can be

shown to satisfy

∥ε̃∥2√
nT

= Op

(
n−

1
4

)
.

Recalling the discussion in Section 2.2, it is worth stressing again the importance of

15See Appendix C in Higgins and Martellosio (2023) for further discussion on the relation between
these conditions.

16Using ∥ε̃∥2 = Op(T
3
4 ), which is established in the proof of Lemma B.2(i), inspection of the proof

of Proposition 1 reveals that as n → ∞ with T ≥ Tmin fixed, the TLS is
√
n-consistent irrespective of

the strength of the factors.
17Moreover, (3.3) also proves to be important for the asymptotic expansion of the objective function;

see Section 3.2.
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the difference between ε and ε̃. To highlight this, consider the rudimentary example of

identically and independently distributed errors, i.e., E[εi1t1εi2t2 ] = σ2 for i1 = i2 and

t1 = t2, and is zero otherwise. In such a case,

∥ε∥2√
nT

≥ 1√
nT

1√
min{n, T}

∥ε∥F
p−→ σ√

T
,

as n → ∞ with T fixed using rank(A)−
1
2 ∥A∥F ≤ ∥A∥2. Therefore (nT )−

1
2 ∥ε∥2 cannot

be Op(1) with T fixed, provided σ is bounded from below by a constant.

3.2 Asymptotic Expansion

Typically the asymptotic distribution of an extremum estimator is obtained by expand-

ing the objective function locally around the true parameter value. It is, however,

difficult to obtain an expansion of the objective function (2.4) since this involves a sum-

mation over a certain number of eigenvalues of a matrix. Following Bai (2009), one

approach would be to proceed from the first-order conditions of the optimisation prob-

lem and avoid dealing with the fully concentrated objective function. Yet Moon and

Weidner (2015) show that it is possible to analyse this objective function directly, by

utilising perturbation theory for linear operators. Key to this approach is demonstrating

that the perturbation is asymptotically small, which in this case follows from Proposi-

tion 1, whereby ∥β̂ − β0∥2 is small, and from (nT )−
1
2 ∥ε̃∥2 diminishing asymptotically.

In light of the discussion in the previous section, the significance of transforming the

errors is again highlighted as the expansion of the objective function remains valid only

so long as (nT )−
1
2 ∥ε̃∥2 is asymptotically small. Since ∥ε̃∥2 ≤ ∥ε∥2, (nT )−

1
2 ∥ε̃∥2 will

be asymptotically small in situations where this will not be true of (nT )−
1
2 ∥ε∥2.18 Let

DnT := CnT ∨ σ(Λ̃0,F 0).
19 The following assumption is made.

Assumption ED. Conditional on DnT , εit are independent over i, with E[εit|DnT ] = 0,

E[ε2it|DnT ] > 0, and sup∥v∥2=1 E[(v⊤εi)4|DnT ] uniformly bounded for DnT -measurable

vectors v.

Assumption ED strengthens EC to restrict dependence between the error and the

factor term, and imposes more stringent conditions on serial dependence in the error.

18The inequality ∥ε̃∥2 ≤ ∥ε∥2 is obtained by the submultiplicativity of the spectral norm and noting
that ∥QX∥2 = 1; see Appendix A.1.

19For two sigma-algebras A and B, A∨ B denotes the sigma-algebra generated by the union of both
A and B.
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The last part of this assumption can be understood as a generalised bound on the fourth

moment of the error, and is closely related to Assumption C(iv) in Bai (2009) which can

be seen by noticing that

1

T 2

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

cov(εit1εit2 , εit3εit4) = E[(v⊤εi)4]− E[(v⊤εi)2]2,

with v = ιT /
√
T . The more general condition arises since, unlike in Bai (2009), the

errors are not assumed to be independent of the factors, the loadings, and the covariates.

Assumption AE. .

(i) Re = R0 = rank(Λ̃0F
⊤
0 ).

(ii) n−1Λ̃
⊤
0 Λ̃0

p−→ ΣΛ̃0
as n → ∞, with T ≥ R0 + 1 fixed or T → ∞, where the

eigenvalues of ΣΛ̃0
are bounded away from zero and from above by a constant.

(iii) For T ≥ R0 + 1 fixed, the eigenvalues of F⊤
0 F 0 are bounded away from zero and

from above by a constant, otherwise T−1F⊤
0 F 0

p−→ ΣF 0 as T → ∞, where the

eigenvalues of ΣF 0 are bounded away from zero and from above by a constant.

Assumption AE(i) strengthens CS(i) and imposes that the number of factors used

in estimation equals to the true rank of the factor term as in Bai (2009) and Moon and

Weidner (2017). A method to detect the true number of factors is discussed in Section

5.2. Assumptions AE(ii) and AE(iii) are similar in spirit to the strong factor assumption,

Assumption B in Bai (2009) and SF in Moon and Weidner (2015). Assumption AE(ii) is,

however, somewhat stronger since it could be that n−1Λ⊤
0 Λ0 converges in probability to

a positive definite matrix, while n−1Λ̃
⊤
0 Λ̃0 converges in probability to a singular matrix.

The leading example of this is where some or all of the factor loadings are independent of

the covariates. Suppose, for example, that λ0,i ∼ iid(0,Σλ), with E[∥λ0,i∥42] uniformly

bounded, and are independent of the covariates. Then as n → ∞, with T fixed or

T → ∞ and T/n→ γ ∈ [0,∞),

1

n
Λ̃

⊤
0 Λ̃0

p−→ min {1, γK} ×Σλ.

Thus, if γ > 0 and Σλ ≻ 0, then Assumption AE(ii) would still be satisfied. However,

if γ = 0 then this is no longer the case, and while the TLS estimator would remain
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consistent (Proposition 1 does not require Assumption AE(ii)), it would become more

challenging to establish its asymptotic distribution. In this event, one may instead

pursue a random effects approach; see, e.g., Section 5 in Hsiao (2018).

Proposition 2. Assume β
p−→ β0 as n → ∞, with T ≥ Tmin fixed or T → ∞. Under

Assumptions MD, ED, and AE, as n→ ∞, with T ≥ Tmin fixed or T → ∞,

Q(β) = Q(β0)−
2√
nT

(β − β0)
⊤d+ (β − β0)

⊤D(β − β0) + r(β),

where d := c+ b(1) + b(2) + b(3) with

Dk1k2 :=
1

nT
tr(X̃k1MF 0X̃

⊤
k2M Λ̃0

)

ck :=
1√
nT

tr(X̃kMF 0 ε̃
⊤M Λ̃0

)

b
(1)
k := − 1√

nT
tr
(
MF 0 ε̃

⊤M Λ̃0
X̃kF 0(F

⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 ε̃
)

b
(2)
k := − 1√

nT
tr
(
MF 0X̃

⊤
kM Λ̃0

ε̃F 0(F
⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 ε̃
)

b
(3)
k := − 1√

nT
tr
(
MF 0 ε̃

⊤M Λ̃0
ε̃F 0(F

⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 X̃k

)
.

Moreover, r(β) is Op((nT )
−1(1 +

√
nT∥β − β0∥2)2).

Proposition 2 establishes an expansion of the objective function around the true

parameter value β0, from which the asymptotic distribution of the estimator can be

obtained.

3.3 Asymptotic Distribution

In order to describe the asymptotic distribution of the estimator some additional nota-

tion is introduced. Let

V :=
1

nT
X̃⊤

(MF 0 ⊗M Λ̃0
)Σ̃D(MF 0 ⊗M Λ̃0

)X̃ ,

ΣD := E[vec(ε)vec(ε)⊤|DnT ], and Σ̃D := (IT ⊗Q⊤
X)ΣD(IT ⊗QX).

Assumption AD. .

(i) The elements ofMPXΛ0Xk, Λ0, and F 0 have uniformly bounded eighth moments.
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(ii) There exist nonstochastic matrices D and V such that D
p−→ D and V

p−→ V as

n → ∞, with T ≥ Tmin fixed or T → ∞, and the eigenvalues of D and V are

bounded away from zero and from above by a constant.

The first part of Assumption AD(i) requires that after having been transformed by

MPXΛ0 , the covariates have finite eighth moments. Intuitively this can be thought of

as applying a weighted demeaning to the data. If, for example, ∥PXΛ0∥max, ∥Λ0∥max,

and ∥Xk∥max are uniformly bounded, and

µmin

(
1

n
Λ̃

⊤
0 Λ̃0

)
≥ c > 0,

then this can be shown to hold.

Theorem 1 (Asymptotic Distribution). Assume ∥c∥2 = Op(1). Under Assumptions

MD, ED, CS, AE, and AD, as n→ ∞,

(i) with T ≥ Tmin fixed or T → ∞ and T/n→ 0,

√
nT (β̂ − β0)

d−→ N (0,D−1VD−1),

(ii) with T → ∞ and T/n→ γ ∈ (0,∞),

√
nT (β̂ − β0) +D

−1(ψ(1) +ψ(2))
d−→ N (0,D−1VD−1),

where

ψ
(1)
k :=

1√
nT

tr(Σ̃D(IT ⊗M Λ̃0
X̃kF 0(F

⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 ))

ψ
(2)
k :=

1√
nT

tr(Σ̃D(F 0(F
⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 X̃kMF 0 ⊗ ITK)).

Theorem 1 establishes that the TLS estimator is asymptotically normally distributed.

When n→ ∞ and T is fixed it is asymptotically unbiased. When n, T → ∞ and T/n→

0 it can be established that ψ(1) and ψ(2) are Op(1), and therefore the TLS estimator

remains asymptotically unbiased. However, when n, T → ∞ and T/n→ γ ∈ (0,∞) the

TLS estimator, like the LS estimator, may exhibit asymptotic bias.
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3.4 Comparison with LS Estimator

The terms ψ(1) and ψ(2) that appear in Theorem 1 are near duplicates of the correspond-

ing expressions described in Theorem 3 of Bai (2009), which provides a distributional

result for the LS estimator. This result, translated in the present context, reads

√
nT (β̂LS − β0) +D

−1
LS (ψ

(1)
LS +ψ

(2)
LS )

d−→ N (0,D−1
LSVLSD−1

LS ), (3.4)

as n, T → ∞ with T/n→ γ ∈ (0,∞), and where

ψ
(1)
LS,k :=

1√
nT

tr(ΣD∗(IT ⊗MΛ0XkF 0(F
⊤
0 F 0)

−1(Λ⊤
0 Λ0)

−1Λ⊤
0 ))

ψ
(2)
LS,k :=

1√
nT

tr(ΣD∗(F 0(F
⊤
0 F 0)

−1(Λ⊤
0 Λ0)

−1Λ⊤
0XkMF 0 ⊗ In))

DLS :=
1

nT
X⊤(MF 0 ⊗MΛ0)X

V LS :=
1

nT
X⊤(MF 0 ⊗MΛ0)ΣD∗(MF 0 ⊗MΛ0)X ,

with DLS and VLS being nonstochastic matrices, such that DLS
p−→ DLS and V LS

p−→ VLS

as n, T → ∞ with T/n → γ ∈ (0,∞), and ΣD∗ := E[vec(ε)vec(ε)⊤|D∗
nT ] with D∗

nT :=

CnT ∨ σ(Λ0,F 0).

Comparing (3.4) to Theorem 1, one may observe that when n, T → ∞ and T/n →

γ ∈ [K−1,∞) the LS estimator and the TLS estimator are asymptotically equivalent.

This is so because with TK ≥ n, QXQ
⊤
X = In, and therefore the action of the transfor-

mation is redundant. However, when T/n→ γ ∈ [0,K−1) this is no longer the case. In

particular, examining the order of the bias terms:

ψ
(1)
• ψ

(2)
•

LS Estimator Op

(√
T
n

)
Op

(√
n
T

)

TLS Estimator Op

(√
T
n

)
Op

(
min

{√
n
T ,
√

T
n

})
.

Therefore, while for the LS estimator ψ
(2)
LS is explosive as n, T → ∞ and T/n → 0,

for the TLS estimator both ψ(1) and ψ(2) are Op(1) under the same asymptotic, and

thereby the TLS estimator is asymptotically unbiased. Indeed, it is on account of this
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difference that the TLS estimator is consistent with T fixed, while the LS estimator is

not.

A natural question arises as to the relative efficiency of the LS and TLS estimators.

There is no clear ordering, in general. Nonetheless, insight can be gained from consid-

ering the particular case in which the errors are homoskedastic. In this scenario, the

following result is obtained.

Proposition 3. Assume ΣD = ΣD∗ = σ20InT , and there exist nonstochastic matrices D

and DLS such that D
p−→ D and DLS

p−→ DLS as n, T → ∞ with T/n → γ ∈ (0,∞), and

the eigenvalues of D and DLS are bounded away from zero and from above by a constant.

Moreover, assume

avar(
√
nT (β̂ − β0)) = σ20D−1

avar(
√
nT (β̂LS − β0)) = σ20D−1

LS ,

where avar(·) denotes asymptotic variance. Then

avar(
√
nT (β̂ − β0)) ⪰ avar(

√
nT (β̂LS − β0)).

Proposition 3 establishes that the LS estimator will, in some instances, be more

efficient than the TLS estimator. To appreciate the source of the inefficiency, notice

that

D −DLS =
1

nT
X⊤(MF 0 ⊗ (PΛ0 − PPXΛ0))X . (3.5)

The LS estimator implicitly estimates both the factors and the loadings simultaneously.

In transforming the model, information about the original factor loadings is lost which,

ultimately, may result in a larger variance. This information loss is manifest in (3.5). Of

course, as remarked on previously, when γ ∈ [K−1,∞) the two estimators are asymp-

totically equivalent, and therefore they achieve the same asymptotic efficiency. This is

manifest in (3.5) as PPXΛ0 = PΛ0 with TK ≥ n.

One may ask whether the model could be transformed in an alternative way in order

to minimise any efficiency loss. If, for example, Λ0 is a smooth function of X, one may

consider using powers of X in the manner of a series approximation to construct an n×d
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matrix W, and thereafter construct QW and proceed as previously. Alternatively, one

may have access to additional external variables which can supplement the covariates in

W to achieve a better approximation of the column space of the factor loadings. Indeed,

in the event that col((X,Λ0)) ⊆ col(W) there is no loss of information in transforming

model throughQW, and therefore avar(
√
nT (β̂−β0)) = avar(

√
nT (β̂LS−β0)). However,

there will typically be a cost to this in terms of asymptotic bias, since the analogue of

ψ(2) that appears in Theorem 1 would generally be of order min{n, d}(nT )−
1
2 . Therefore

improving on the approximation at the expense of a larger d would typically result in

greater bias.

Following on from this discussion, it is natural to compare a generalised least squares

interactive fixed effects estimator (GLS) constructed as

β̂
∗
GLS =

(
X⊤ ((MF 0 ⊗MΛ0)ΣD∗(MF 0 ⊗MΛ0))

+X
)−1

×X⊤ ((MF 0 ⊗MΛ0)ΣD∗(MF 0 ⊗MΛ0))
+ vec(Y ),

and a corresponding generalised transformed least squares interactive fixed effects esti-

mator (GTLS)

β̂
∗
GTLS =

(
X̃⊤ (

(MF 0 ⊗M Λ̃0
)Σ̃D(MF 0 ⊗M Λ̃0

)
)+

X̃
)−1

× X̃⊤ (
(MF 0 ⊗M Λ̃0

)Σ̃D(MF 0 ⊗M Λ̃0
)
)+

vec(Ỹ ).

The relative efficiency of these estimators is compared in the following result. Let

D∗ :=
1

nT
X̃⊤ (

(MF 0 ⊗M Λ̃0
)Σ̃D(MF 0 ⊗M Λ̃0

)
)+

X̃

D∗
LS :=

1

nT
X⊤ ((MF 0 ⊗MΛ0)ΣD∗(MF 0 ⊗MΛ0))

+X .

Proposition 4. Assume ΣD = ΣD∗ = Σ, where Σ is nonstochastic, and there exist

nonstochastic matrices D∗ and D∗
LS, such that D∗ p−→ D∗ and D∗

LS
p−→ D∗

LS as n, T → ∞

with T/n→ γ ∈ (0,∞), and the eigenvalues of D∗ and D∗
LS are bounded away from zero
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and from above by a constant. Moreover, assume

avar(
√
nT (β̂

∗
GTLS − β0)) = D∗−1

avar(
√
nT (β̂

∗
GLS − β0)) = D∗−1

LS .

Then

avar(
√
nT (β̂

∗
GTLS − β0)) ⪰ avar(

√
nT (β̂

∗
GLS − β0)).

Intuitively, the source of the relative inefficiency of the GTLS estimator remains the

loss of information through transforming the factor loadings.

4 Alternative Estimators

According to Theorem 1, when n is large and T is fixed the TLS estimator is consistent

and asymptotically unbiased. This stands in contrast to the LS estimator which is

generally inconsistent with T fixed. There are, however, alternative estimators that can

be applied to estimate β0 when T is fixed. Of particular interest here are the FIVU

estimator of Robertson and Sarafidis (2015) (RS), and the quasi-difference estimator of

Ahn et al. (2013) (ALS). This section places the RS, ALS, and TLS estimators in a

common framework and establishes connections between them. Since the focus of this

section is on the large n, fixed T setting, it is assumed throughout the following that X

has full column rank.

4.1 RS Estimator

Under strict exogeneity

E
[
(IT ⊗X)⊤vec(ε)

]
= E

[
(IT ⊗X)⊤vec(Y −X · β0 −Λ0F

⊤
0 )
]
= 0.
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If, in addition, one assumes the data {Xi,λ0,i, εi} are identically distributed over i, and

that the factors are fixed, then

E
[
X⊤Λ0F

⊤
0

]
=

n∑
i=1

E
[
vec(Xi)λ

⊤
0,i

]
F⊤

0

=: nΨ0F
⊤
0 .

20

This leads to the FIVU estimator of Robertson and Sarafidis (2015), which is based on

the moment condition

E
[
(IT ⊗X)⊤vec(Y −X · β0)− nvec(Ψ0F

⊤
0 )
]
= 0. (4.1)

Though their approach is predicated on the factor loadings being random, one may

instead adopt a fixed effect perspective treating these as additional parameters. In

doing so one may reframe

n∑
i=1

vec(Xi)λ
⊤
0,i = X⊤Λ0 = (X⊤X)

1
2 Λ̃0, (4.2)

and so consider the alternate moment condition

E
[
(IT ⊗X)⊤vec(Y −X · β0)− vec((X⊤X)

1
2 Λ̃0F

⊤
0 )
]
= 0, (M-RS)

which, notice, does not rely on the factor loadings and the covariates being identically

distributed over the cross-section. This latter moment condition is referred to as M-RS

since, despite differing from (4.1), both conditions share a common conception.

M-RS does not, however, uniquely identify Λ̃0 nor F 0 since the product Λ̃0F
⊤
0 =

Λ̃0HH
−1F⊤

0 = Λ̃∗F
⊤
∗ for any R0×R0 invertible matrix H. This is a consequence of a

fundamental indeterminacy inherent to the factor structure, and is typically dealt with

by focusing on a particular factorisation of Λ̃0F
⊤
0 . There are multiple factorisations

which may be plausibly imposed, but for concreteness the following scheme is adopted:

FRS =

IR0

ΦRS

 , Λ̃RS is unrestricted, (R-RS)

20Where Xi is T ×K.
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where ΦRS is a (T − R0) × R0 matrix of unrestricted parameters. Let ΘΛ̃ and ΘF

denote the parameter space of Λ̃ and F , respectively, and let Θ̄F denote the restricted

parameter space of F under R-RS. The RS estimator is obtained as

(β̂RS,
ˆ̃ΛRS, F̂RS) := argmin

β∈Θβ , Λ̃∈ΘΛ̃, F∈Θ̄F

QRS(β, Λ̃,F ), (4.3)

with

QRS(β, Λ̃,F ) := φ⊤
RS(β, Λ̃,F )WφRS(β, Λ̃,F )

φRS(β, Λ̃,F ) :=
1

nT

(
(IT ⊗X)⊤vec(Y −X · β)− vec((X⊤X)

1
2 Λ̃F⊤)

)
,

where W denotes a positive definite weighting matrix.

4.2 ALS Estimator

A different moment condition is studied by Ahn et al. (2013) which takes the form

E
[
(V0 ⊗X)⊤vec(Y −X · β0)

]
= 0, (M-ALS)

where the T × (T − R0) matrix V0 forms a basis for the left null space of F 0. As

previously, M-ALS fails to uniquely identify V0, as V0H forms a basis for the left null

space of F 0 for any (T−R0)×(T−R0) invertible matrixH. As a consequence, additional

restrictions are adopted. Ahn et al. (2013) consider the following restriction:

V =

 ΦALS

−IT−R0

 , (R-ALS)

where ΦALS is an R0 × (T −R0) matrix of unrestricted parameters. Let Θ̄V denote the

restricted parameter space of V under R-ALS. The ALS estimator is obtained as

(β̂ALS, V̂ALS) := argmin
β∈Θβ , V∈Θ̄V

QALS(β,V), (4.4)
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with

QALS(β,V) := φ⊤
ALS(β,V)WφALS(β,V)

φALS(β,V) :=
1

nT

(
(V ⊗X)⊤vec(Y −X · β)

)
,

where W denotes a positive definite weighting matrix.

4.3 TLS Estimator

The TLS estimator can be obtained from the moment condition

E
[
(V0 ⊗QX)

⊤vec(Y −X · β0)
]
= 0, (M-TLS)

which holds under Assumption ED. This is similar to M-ALS, however, the TLS esti-

mator can be understood to utilise an alternative restriction to R-ALS which takes the

form

V⊤V = IT−R0 . (R-TLS)

Under R-TLS it is possible to profile V out of the objective function to obtain

β̂ := argmin
β∈Θβ

(
min
V∈Θ̃V

QTLS(β,V)

)
= argmin

β∈Θβ

Q(β),

where Θ̃V denotes the restricted parameter space for V under R-TLS, and

QTLS(β,V) := φ⊤
TLS(β,V)φTLS(β,V)

φTLS(β,V) :=
1√
nT

(V ⊗QX)
⊤vec(Y −X · β).

4.4 Asymptotic Comparisons

Though the TLS estimator uses an identity weighting matrix, notice that if the errors

εit ∼ iid(0, σ20) conditional on DnT , then the optimal weighting matrix associated with
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M-TLS is (up to scale)

W ∗ =
1

σ20
(V⊤

0 V0 ⊗Q⊤
XQX)

−1 =
1

σ20
I(T−R0)TK .

Thus, transforming the model byQX tacitly imposes the optimal weighting matrix under

homoskedasticity. This, as it turns out, is important to ensure that the estimator remains

consistent when T → ∞. Intuitively, as n, T → ∞ and T/n → K−1 the TLS estimator

approaches the LS estimator. Since the LS estimator is known to be consistent when

both n and T are large, this closeness is desirable, and is a mirror to the relationship

between the within estimator and the optimal GMM estimator discussed in Alvarez and

Arellano (2003). The aim of this section is to draw comparisons between the RS, ALS,

and TLS estimators. However, since the TLS estimator cannot be separated from the

way in which it is weighted, comparable one-step ALS and RS estimators are studied.

For the RS estimator this amounts to setting W = (IT ⊗ (X⊤X)−1), and for the ALS

estimator setting W = (IT−R0 ⊗ (X⊤X)−1). Though insightful, to be clear, the results

obtained in this section are specific to this choice of weighting matrix and would not

necessarily apply under alternative weighting schemes. In the first result, Proposition 5

establishes that a one-step RS estimator that imposes R-RS is asymptotically equivalent

to the TLS estimator.

Proposition 5. Assume it is possible to decompose Λ̃0F
⊤
0 = Λ̃∗F

⊤
∗ such that F ∗ ∈ Θ̄F .

Set W = (IT ⊗ (X⊤X)−1) and let θ := (β; vec(Φ)) and θ0 := (β0; vec(Φ∗)), where Φ∗

is the unrestricted block of F ∗. Let Θθ,RS denote the parameter space of θ. Assume that

as n→ ∞ with T ≥ R0 + 1 fixed, the GMM estimator defined by

θ̂RS := argmin
θ∈Θθ,RS

(
min
Λ̃∈ΘΛ̃

QRS(β, Λ̃,F (Φ))

)
, 21

satisfies

√
nT (θ̂RS − θ0)

d−→ N
(
0,D−1

RSVRSD−1
RS

)
,

with DRS := plimn→∞G⊤
RSWGRS and VRS := plimn→∞ nT × G⊤

RSWHRSWGRS, and

21Since Λ̃ is unrestricted under R-RS, with W = (IT ⊗ (X⊤X)−1) it proves convenient to profile Λ̃
out of the objective function.
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where

GRS := E[∇φRS(β0,F (Φ∗))|DnT ]

HRS := E[φRS(β0,F (Φ∗))φ
⊤
RS(β0,F (Φ∗))|DnT ],

and φRS(β0,F (Φ∗)) is the moment condition obtained upon profiling out Λ̃; see the

proof details. Under Assumptions ED and AE, as n→ ∞ with T ≥ R0 + 1 fixed,

√
nT (β̂RS − β0)

d−→ N (0,D−1VD−1).

Proposition 5 establishes that the TLS and one-step RS estimators will share the

same asymptotic distribution, despite the RS estimator imposing a restriction of a dif-

ferent nature. This is so because, while R-RS restricts the factors, these will only feature

in the asymptotic distribution of β̂ through the projector MF ∗ which, provided that it

is indeed possible to decompose Λ̃0F
⊤
0 = Λ̃∗F

⊤
∗ such that F ∗ ∈ Θ̄F , equals to MF 0 .

This latter point is, however, an important caveat. If this condition does not hold, then

M-RS in combination with R-RS may fail to identify β0, though it may still be iden-

tified under alternative restrictions, such as R-TLS. Identification failures of this kind

have been remarked on previously; see, e.g., Hayakawa (2016). In this sense restrictions

imposed on the factor term for the purposes of identification are only without loss of

generality if these are indeed compatible with the true, unknown factor term.

An obvious question arises as to whether this asymptotic equivalence also holds for

the corresponding one-step ALS estimator. Proposition 6 below establishes that this is

not necessarily the case.

Proposition 6. Assume it is possible to decompose Λ̃0F
⊤
0 = Λ̃∗F

⊤
∗ such that F ∗ ∈ Θ̄F .

SetW = (IT−R0⊗(X⊤X)−1) and let θ := (β; vec(Φ)) and θ0 := (β0; vec(Φ∗)), where Φ∗

is the unrestricted block of F ∗. Let Θθ,ALS denote the parameter space of θ. Moreover,

let V∗ := (Φ∗;−IT−R0) and assume that as n → ∞ with T ≥ R0 + 1 fixed, the GMM

estimator defined by

θ̂ALS = argmin
θ∈Θθ,ALS

QALS(β,V(Φ)),

25



satisfies

√
nT (θ̂ALS − θ0)

d−→ N
(
0,D−1

ALSVALSD−1
ALS

)
,

with DALS := plimn→∞G⊤
ALSWGALS and VALS := plimn→∞ nT×G⊤

ALSWHALSWGALS,

and where

GALS := E[∇φALS(β0,V(Φ∗))|DnT ]

HALS := E[φALS(β0,V(Φ∗))φ
⊤
ALS(β0,V(Φ∗))|DnT ].

Under Assumptions ED and AE, as n→ ∞ with T ≥ R0 + 1 fixed,

√
nT (β̂ALS − β0)

d−→ N (0,D−1
∗ V∗D−1

∗ ), (4.5)

where

D∗ := plim
n→∞

1

nT
X̃⊤

(V∗V⊤
∗ ⊗M Λ̃0

)X̃

V∗ := plim
n→∞

1

nT
X̃⊤

(V∗V⊤
∗ ⊗M Λ̃0

)ΣD(V∗V⊤
∗ ⊗M Λ̃0

)X̃ .

The asymptotic distribution of the one-step ALS estimator will generally not coincide

with that of the TLS estimator (nor indeed the one-step RS estimator under R-RS),

unless V⊤
∗ V∗ = IT−R0 , i.e. unless V∗ forms an orthonormal basis for the left null space

of the factors.22 Notice that Proposition 6 also assumes that it is possible to decompose

the factor term in the manner of R-RS. This is because the existence of a matrix V ∈ Θ̄V

such that V⊤F 0 = 0 is equivalent to the assumption that it is possible to decompose

Λ̃0F
⊤
0 = Λ̃∗F

⊤
∗ such that vec(F ∗) ∈ Θ̄F .

23

Overall the results of this section illustrate the importance of both the moment con-

dition and any adopted normalisation in determining the properties of the estimator.

The TLS and ALS estimators consist of a moment condition and a particular normalisa-

tion. Although the moment conditions are similar, the difference in their normalisations

is important and ultimately may result in these estimators having different asymptotic

distributions (Proposition 6). The RS estimator is not coupled with a particular normal-

22If T −R0 = 1 then V⊤
∗ V∗ will be a scalar and the covariance matrix will equal to that of the TLS

estimator.
23See Appendix A.3.
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isation, however, if one considers a normalisation which is, to some extent, equivalent to

that used by ALS, the asymptotic distribution of the resultant RS estimator coincides

with that of the TLS estimator and not the ALS estimator (Proposition 5).24 As a

final observation, notice that even under homoskedasticity the asymptotic variance of

the ALS estimator would not collapse to D−1
∗ unless V∗ is orthonormal, and therefore

the TLS estimator will be more efficient. This is formalised in the following result.

Proposition 7. Assume ΣD = σ20InT , and there exist nonstochastic matrices D, D∗,

V, and V∗, such that D
p−→ D, D∗

p−→ D∗, V
p−→ V, and V ∗

p−→ V∗ as n → ∞ with

T ≥ R0 + 1 fixed, and the eigenvalues of D, D∗, V, and V∗ are bounded away from zero

and from above by a constant. Moreover, assume

avar(
√
nT (β̂ − β0)) = D−1VD−1

avar(
√
nT (β̂ALS − β0)) = D−1

∗ V∗D−1
∗ .

Then

avar(
√
nT (β̂ALS − β0)) ⪰ avar(

√
nT (β̂ − β0)),

where avar(·) denotes asymptotic variance.

5 Further Matter

5.1 Inference

This subsection describes how to proceed with asymptotic inference. Two settings are

considered, in turn. The first case corresponds to the large n, fixed T setting, while the

second case corresponds to the large n, large T setting. In the interest of space, a single

set of conditions is presented under which the results in the following subsections can

be obtained. Let ΓbT (A) := A ⊙ (Ω ⊗ In) for an nT × nT matrix A, with Ω being a

T ×T matrix with elements ωt1t2 = 1{|t1− t2| < bT }, and bT is a positive integer-valued

sequence.

24Propositions 5, 6, and 7 establish asymptotic results for ALS and RS estimators that do not employ
optimal weighting matrices. If, instead, one considers optimal GMM estimators, then the RS and ALS
estimators are asymptotically equivalent which follows from Theorem 4 of Robertson and Sarafidis
(2015). Further, one can show that these are, in turn, equivalent to the GTLS estimator described in
Section 3.4.

27



Assumption IF. .

(i) The elements of Xk and MPXΛ0XkMF 0 have uniformly bounded eighth mo-

ments.

(ii) n−1Λ⊤
0 Λ0

p−→ ΣΛ0 as n → ∞, where the eigenvalues of ΣΛ0 are bounded from

above by a constant.

(iii) Conditional on DnT , εit are independent over i, with E[εit|DnT ] = 0, E[ε2it|DnT ] >

0, and sup∥v∥2=1 E[(v⊤εi)16|DnT ] uniformly bounded for DnT -measurable vectors

v.

(iv) ∥ΓbT (ΣD)−ΣD∥2 = Op(1) as n, T, bT → ∞ with T/n→ γ ∈ (0,∞) and b8T /n→ 0.

Assumption IF imposes more stringent conditions on several variables. Weaker re-

strictions can be imposed upon the errors, at the expense of more restrictive conditions

on the factors and loadings; for example, that these are uniformly bounded as in Moon

and Weidner (2017). Appendix A.4 verifies IF(iii) and IF(iv) under first order serial

correlation as an illustration.

5.1.1 Inference under Large n, Fixed T

When T is fixed the TLS estimator is asymptotically unbiased. Therefore, in order

to proceed with asymptotic inference, one need only obtain consistent estimators of

the asymptotic covariance matrices. Notice, however, that minimisers of the objective

function (2.3) with respect to the transformed factor loadings and the factors are not

unique. In order to resolve this indeterminacy, estimates of the transformed factor

loadings and the factors may be defined in the following manner. Consider a singular

value decomposition (Ỹ − X̃ · β̂) =:
∑T

t=1 stutv
⊤
t with singular values sT ≤ . . . ≤

s1. Define ˆ̃Λ :=
√
n(u1, . . . ,uR0) and F̂ := (s1v1, . . . , sR0vR0)/

√
n. Although these

estimators will not, in general, be consistent for F 0 and Λ̃0 themselves, they will produce

consistent estimators of projectors MF 0 and M Λ̃0
. Let

D̂ :=
1

nT
X̃⊤

(M F̂ ⊗M ˆ̃Λ
)X̃

V̂ :=
1

nT
X̃⊤

(M F̂ ⊗M ˆ̃Λ
) ˆ̃Σ(M F̂ ⊗M ˆ̃Λ

)X̃ ,
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where ˆ̃Σ := (IT ⊗Q⊤
X)ΓT (vec(ê)vec(ê)

⊤)(IT ⊗QX) and ê := (Y −X · β̂)M F̂ .

Proposition 8. Under Assumptions MD, CS, AE, AD, and IF, as n → ∞ with T ≥

Tmin fixed,

∥D̂ −D∥2 = Op(1)

∥V̂ − V ∥2 = Op(1).

5.1.2 Inference under Large n, Large T

Under an asymptotic where n, T → ∞ and T/n → γ ∈ (0,∞), the TLS estimator

is asymptotically biased. This subsection shows that this bias can be consistently

estimated and a bias-corrected TLS estimator can be constructed. This, in combi-

nation with consistent estimators of the asymptotic covariance matrices, paves the

way for asymptotically valid inference. Consider a singular value decomposition (Y −

X · β̂) =:
∑T

t=1 stutv
⊤
t with singular values sT ≤ . . . ≤ s1. Then define F̌ :=

(s1v1, . . . , sR0vR0)/
√
n,

D̂ :=
1

nT
X̃⊤

(M F̂ ⊗M ˆ̃Λ
)X̃

V̂ :=
1

nT
X̃⊤

(M F̂ ⊗M ˆ̃Λ
) ˇ̃Σ(M F̂ ⊗M ˆ̃Λ

)X̃

ψ̂
(1)
k :=

1√
nT

tr( ˇ̃Σ(IT ⊗M ˆ̃Λ
X̃kF̂ (F̂

⊤
F̂ )−1( ˆ̃Λ

⊤ ˆ̃Λ)−1 ˆ̃Λ
⊤
))

ψ̂
(2)
k :=

1√
nT

tr( ˇ̃Σ(F̂ (F̂
⊤
F̂ )−1( ˆ̃Λ

⊤ ˆ̃Λ)−1 ˆ̃Λ
⊤
X̃kM F̂ ⊗ ITK)),

where ˇ̃Σ := (IT ⊗Q⊤
X)ΓbT (vec(ě)vec(ě)

⊤)(IT ⊗QX) and ě := (Y −X · β̂)M F̌ .

Proposition 9. Under Assumptions MD, CS, AE, AD, and IF, as n, T → ∞ with

T/n→ γ ∈ (0,∞),

∥ψ̂(1) −ψ(1)∥2 = Op(1)

∥ψ̂(2) −ψ(2)∥2 = Op(1)

∥D̂ −D∥2 = Op(1)

∥V̂ − V ∥2 = Op(1).
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5.2 Estimating the Number of Factors

The result established in Section 3.1 demonstrates that the TLS estimator will remain

consistent with the number of factors overestimated. However, the asymptotic distribu-

tion of the estimator is characterised under the assumption that Re = R0, and therefore

where the true number of factors is not known in advance, it is necessary to estimate

this from the data before proceeding with inference. Moreover, overestimation of the

number of factors will typically lead to a loss of efficiency in finite samples and therefore

it is still desirable to input the correct number of factors even if interest lies primarily

in point estimation.25 One approach to detecting this number involves first estimating

the coefficients with the number of factors overestimated, and using these estimates to

construct a pure factor model. Then, methods devised to detect the number of factors

in a pure factor model can be applied. Examples of these detection methods include Bai

(2003), Onatski (2009), and Ahn and Horenstein (2013). This section focuses on one of

these, the eigenvalue ratio test of Ahn and Horenstein (2013), and considers how this

method can be applied to detect the number of factors in the present context.

Let ϱn be a sequence depending on n (and possibly also T ) that tends towards zero.

Define

µ∗r := µr

(
1

nT

(
Ỹ − X̃ · β̂

)⊤ (
Ỹ − X̃ · β̂

)
+ ϱ2nIT

)
, (5.1)

that is, µ∗r is the r-th largest eigenvalue of the bracketed matrix on the right. Thereafter

let

EigR(r) :=
µ∗r
µ∗r+1

for r = 1, . . . , T − 1.

The main departure from the original test described by Ahn and Horenstein (2013) is the

addition of the matrix ϱ2nIT . This is used to control the rate at which the eigenvalues of

the matrix in (5.1) can approach zero. Intuitively, the idea behind the eigenvalue ratio

test is that the first R0 eigenvalues of the matrix (nT )−1(Ỹ −X̃ · β̂)⊤(Ỹ −X̃ · β̂) should

be of a similar magnitude and large, while the remaining (T −R0) should be of a similar

magnitude but small. As such, the largest ratio between consecutive eigenvalues should

25In particular Lu and Su (2016) provide further discussion of this issue, as well as an alternative
way to proceed.
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reveal the true number of factors. Placed into the present context, Ahn and Horenstein

(2013) study the model with β0 = 0, i.e.,

Y = Λ0F
⊤
0 + ε,

where the properties of the (T − R0) smallest eigenvalues of the matrix (nT )−1Y ⊤Y

can be deduced through the properties of the singular values of the error ε. In partic-

ular, under certain conditions, the smallest eigenvalues can be shown to be similar in

magnitude. However, in this context the constructed factor model takes the form

Ỹ = Λ̃0F
⊤
0 + ẽ with ẽ := X̃ · (β0 − β̂) + ε̃.

It is more difficult to establish the properties of the singular values of the transformed

error ε̃ without imposing further restrictions, in addition to which the term X̃ · (β0− β̂)

now also appears.26 Instead, the sequence ϱn acts to regularise the eigenvalues and

thereby avoids the need to impose more stringent conditions. In aid of the following let

(nT )−
1
2 ∥ε̃∥2 = Op(rnT ).

Proposition 10. Assume ∥β̂−β0∥2 = Op(rnT ) and rnT , ϱn → 0 with ϱ−1
n rnT = O(1) as

n→ ∞, with T ≥ Tmin fixed or T → ∞. Moreover, assume R0 ≥ 1. Under Assumptions

MD and AE, as n→ ∞, with T ≥ Tmin fixed or T → ∞,

Pr

(
max

1≤r≤T−1
EigR(r) = R0

)
→ 1. (5.2)

Following Ahn and Horenstein (2013), the possibility of R0 = 0 can be accommo-

dated by introducing a ‘mock eigenvalue’. For example, set µ∗0 := ϱn. If R0 > 0 then

µ∗0/µ
∗
1 = Op(1), while if R0 = 0, µ∗0/µ

∗
1 = Op(ϱ

−1
n ).27 Notice also that ϱ−1

n rnT = O(1)

allows for ϱ−1
n rnT = O(1) and therefore Proposition 10 only requires that ϱn diminish

no faster than rnT . For example, one can establish ∥ε̃∥2 = Op(T
3
4 ) under Assumption

EC or ED, and therefore ϱn = T
1
4 /
√
n would be permissible provided T = O(n2), which

includes both where T is fixed, and where n, T → ∞ and T/n→ γ ∈ [0,∞).

26For example, if ε is assumed to be subgaussian then the results of Vershynin (2012) can be applied
to establish properties of the singular values of ε̃.

27An alternative means of detecting the correct number of factors can be based on the J-statistic
described in Higgins (2023).
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5.3 Dynamic Model

The TLS estimator can also be applied to estimate models in which lagged outcomes

appear as regressors. To formalise this, consider the model

Y = α0Y −1 +X · β0 +Λ0F
⊤
0 + ε

=: Z · θ0 +Λ0F
⊤
0 + ε,

where θ0,1 := α0, Z1 := Y −1 := (y0, . . . ,yT−1), and θ0,k+1 = β0,k, Zk+1 = Xk for

k = 1, . . . ,K. Let EnT denote σ(X1, . . . ,XK , ỹ0, Λ̃0,F 0). Moreover, let πJ be a J × 1

vector of all zeros, except the first element which equals to 1, and W be a T × T

shift matrix which consists of zeros everywhere, except those elements directly above

the main diagonal which equal to 1, G(α) := (IT − αW )−1W , G := G(α0), g(α) :=

(IT +αG(α))⊤πT , g := g(α0),H1 :=X ·β0+y0g
⊤, andHk+1 :=Xk for k = 1, . . . ,K.

ΣE := E[vec(ε)vec(ε)⊤|EnT ], and Σ̃E := (IT ⊗Q⊤
X)ΣE(IT ⊗QX).

In order to obtain the following result, Assumptions MD, ED, CS, AE, and AD

need to be extended to accommodate lagged outcomes appearing as regressors. These

are referred to as MD*, ED*, CS*, AE*, and AD*. For the sake of brevity, these are

presented in Appendix E. These extended assumptions are, for the most part, quite

minor modifications. However, it is worth remarking further on Assumption CS*(ii)

which requires

min
δ∈RK+1:∥δ∥2=1

T∑
t=Tmin

µt

(
1

nT
(Z̃ · δ)⊤(Z̃ · δ)

)
≥ b > 0,

w.p.a.1 as n → ∞, with T ≥ Tmin fixed or T → ∞, and where Z̃ · δ :=
∑K+1

k=1 δkZ̃k.

An important implication of this is that at least one element of β0 must be nonzero to

ensure that the covariates can be used to construct a valid set of instruments for the

lagged outcome.

Theorem 2. Assume ∥c+∥2 = Op(1).
28 Under Assumptions MD*, ED*, CS*, AE*,

and AD*, as n→ ∞,

28c+ is defined in Appendix E.
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(i) with T ≥ Tmin fixed or T → ∞ and T/n→ 0,

√
nT (θ̂ − θ0)

d−→ N (0,D−1VD−1),

(ii) with T → ∞ and T/n→ γ ∈ (0,∞),

√
nT (θ̂ − θ0) +D−1

+ (ψ(0) +ψ(1) +ψ(2))
d−→ N (0,D−1

+ V+D−1
+ ),

where

ψ(0) :=
1√
nT

tr(Σ̃E((P F 0GMF 0 +GP F 0)⊗ ITK))πK+1

ψ
(1)
k :=

1√
nT

tr(Σ̃E(IT ⊗M Λ̃0
H̃kF 0(F

⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 ))

ψ
(2)
k :=

1√
nT

tr(Σ̃E(F 0(F
⊤
0 F 0)

−1(Λ̃
⊤
0 Λ̃0)

−1Λ̃
⊤
0 H̃kMF 0 ⊗ ITK)),

and D, D+, V, and V+ are defined in Assumption AD* (ii).

The most significant difference when comparing Theorem 2 to Theorem 1 is the

additional bias term ψ(0). This arises due to the presence of the lagged outcome and is

the analogue of the bias characterised in Moon and Weidner (2017) for the LS estimator.

Comparing the order of the biases:

ψ
(0)
• ψ

(1)
• ψ

(2)
•

LS Estimator Op

(√
n
T

)
Op

(√
T
n

)
Op

(√
n
T

)
TLS Estimator Op

(
min

{√
n
T ,
√

T
n

})
Op

(√
T
n

)
Op

(
min

{√
n
T ,
√

T
n

})
.

Thus, it remains the case that the TLS estimator is asymptotically unbiased when

n, T → ∞ and T/n→ 0, unlike the LS estimator. It is, however, important to recognise

that the nature of the bias ψ(0) is somewhat different from that of the other two biases

ψ(1) and ψ(2). To appreciate this, consider the case in which εit ∼ iid(0, σ20), and the
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true factors and loadings take the form of individual effects, that is,

λ0 :=


λ0,1
...

λ0,n

 , f0 := ιT .

In this case ψ(1) = ψ(2) = 0 since ΣE ∝ InT , leaving the only remaining bias as ψ(0).

The fact that ψ(0) remains nonzero highlights that this bias originates from correlation

between the errors and the lagged outcomes, unlike ψ(1) and ψ(2) which arise due to

the properties of the error term itself.

It is also interesting to notice that when the true factors and factor loadings take

the form of individual effects the expression for ψ
(0)
1 collapses to

ψ
(0)
1 :=

σ20√
nT

1

T
tr(PX)tr(GιT ι

⊤
T ).

A bit of algebra reveals that

ψ
(0)
1 = min

{√
n

T
,K

√
T

n

}
σ20

(1− α0)

(
1− 1

T

(1− αT
0 )

1− α0

)
, (5.3)

which follows because tr(PX) = min{n, TK}. This again highlights the significance of

the transformation QX. Without this

ψ
(0)
1 =

√
n

T

σ20
(1− α0)

(
1− 1

T

(1− αT
0 )

1− α0

)
, (5.4)

which matches (up to scale) the familiar expression derived in Nickell (1981).

Similar to the result in Proposition 3, it is also insightful to compare the asymptotic

variance of the LS and TLS estimators under homoskedasticity of the errors. Let H̄1 :=

X · β0, H̄k+1 :=Xk for k = 1, . . . ,K, H̄ := (vec(H̄1), . . . , vec(H̄K+1)), and define

D̄+ :=
1

nT
˜̄H
⊤
(MF 0 ⊗M Λ̃0

) ˜̄H+
1

nT
tr(Σ̃E(GG

⊤ ⊗ ITK))πK+1π
⊤
K+1,

D̄+,LS :=
1

nT
H̄⊤

(MF 0 ⊗MΛ0)H̄+
1

nT
tr(ΣE∗(GG⊤ ⊗ In))πK+1π

⊤
K+1,

with E∗
nT := σ(X1, . . . ,XK ,y0,Λ0,F 0) and ΣE∗ := E[vec(ε)vec(ε)⊤|E∗

nT ].

Proposition 11. Assume ΣE = ΣE∗ = σ20InT , ∥y0∥2 = Op(
√
n), and there exist
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nonstochastic matrices D̄+ and D̄+,LS, such that D̄+
p−→ D̄+ and D̄+,LS

p−→ D̄+,LS as

n, T → ∞ with T/n → γ ∈ (0,∞), and the eigenvalues of D̄+ and D̄+,LS are bounded

away from zero and from above by a constant. Moreover, assume

avar(
√
nT (θ̂TLS − θ0)) = σ20D̄

−1
+

avar(
√
nT (θ̂LS − θ0)) = σ20D̄

−1
+,LS,

where avar(·) denotes asymptotic variance. Then

avar(
√
nT (θ̂TLS − θ0)) ⪰ avar(

√
nT (θ̂LS − θ0)).

In this case one can decompose

D̄+,LS − D̄+ =
1

nT
H̄⊤

(MF 0 ⊗ (PΛ0 − PPXΛ0))H̄

+
σ20
nT

tr((GG⊤ ⊗MX))πK+1π
⊤
K+1. (5.5)

The first term in the above is analogous to (3.5) and reflects the information lost in

transforming the factor loadings. The second term in (5.5) reflects information in the

covariates that is lost by transforming the model through QX. For the covariates Xk

which are strictly exogenous, there is no loss of information. For lagged outcomes on

the other hand, information may be lost. Indeed, one can establish that

σ20
nT

tr((GG⊤ ⊗MX))πK+1π
⊤
K+1 ⪰ 0.

When the model includes lagged outcomes it becomes more difficult to compare the

efficiency of the RS, ALS and TLS estimators in the manner of Section 4. In this event

the TLS estimator uses only a subset of the available moment conditions. One would,

therefore, expect there to be cases where the TLS estimator is less efficient than the RS

and ALS estimators.
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6 Simulations

6.1 Short Panel Exercise

This first exercise compares the performance of the TLS estimator with alternatives in

the context of a short panel. Outcomes are generated according to

Y = β0,1X1 + β0,2X2 +Λ0F
⊤
0 + ε,

with β0,1 = 1 and β0,2 = −1. The covariate X1 is generated with elements drawn

from the standard normal distribution. The covariate X2 = Λ0F
⊤
0 + ϵ, where R0 = 2,

and λ0,ir, f0,tr, and ϵit are drawn independently from the standard normal distribution.

Note that the factors and loadings which enter into X2 are the same as those that

appear in the outcome equation. For the error in the outcome equation, first a variable

uit is generated as uit := u∗it × ∥f0,t∥2 where u∗it are independent over i and t and

normally distributed with a mean of zero and variance drawn uniformly from the interval

[0.5, 1.5]. Thereafter, the errors are generated according to εit = ϕεi,t−1 + uit with

ϕ = 0.5 and εi0 = 0. In this way the errors exhibit both conditional and unconditional

heteroskedasticity, as well as serial correlation.

Table 1 below displays the empirical bias and empirical standard error of the LS

estimator, the TLS estimator, and the one-step ALS estimator described in Section 4.2.

Throughout Re = R0 and the number of draws is 10, 000.29

29Specifically, the empirical bias is computed by averaging
√
nT (β̂ − β0) over Monte Carlo draws.

The empirical standard error is computed by taking the standard deviation of
√
nT (β̂−β0) over Monte

Carlo draws.
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Table 1: Empirical Bias (Empirical Standard Error)

β1 β2

n \ T 6 9 12 6 9 12

LS

100
0.004 -0.002 0.017 6.417 6.185 4.395

(1.393) (1.377) (1.356) (5.405) (6.047) (5.563)

250
0.019 0.004 -0.003 9.789 8.962 5.382

(1.358) (1.334) (1.338) (8.091) (8.757) (6.915)

500
-0.013 -0.019 -0.023 13.782 12.008 6.614

(1.349) (1.347) (1.329) (11.292) (11.849) (8.171)

TLS

100
0.010 -0.004 0.021 0.349 0.232 0.214

(1.474) (1.396) (1.369) (1.933) (1.545) (1.450)

250
0.014 -0.004 0.009 0.088 0.053 0.034

(1.454) (1.373) (1.364) (1.522) (1.392) (1.370)

500
-0.011 -0.019 -0.021 0.030 0.028 0.013

(1.455) (1.385) (1.353) (1.477) (1.395) (1.355)

ALS

100
0.031 0.003 0.019 0.356 0.173 0.191

(2.164) (2.531) (2.928) (2.637) (2.709) (3.117)

250
0.016 0.019 -0.012 0.093 0.032 0.028

(2.126) (2.548) (2.870) (2.224) (2.528) (2.868)

500
-0.012 -0.008 -0.014 0.025 0.041 -0.009

(2.140) (2.516) (2.839) (2.140) (2.546) (2.884)

Since the first regressor is uncorrelated with the factors and the loadings, all three

of the estimators for β1 display small bias. On the other hand, for β2 the LS estimator

exhibits substantially more bias than the TLS and ALS estimators, with this becoming

more acute with T fixed and n increasing. This is unsurprising, since the LS estimator is

known to suffer from asymptotic bias of order n/T . When comparing the TLS and ALS

estimators, their bias is small and overall quite similar. Turning to the standard error,

for β1 the LS estimator has a smaller standard error than the TLS estimator, though

their values become more similar for larger values of n and T . This might be expected

given Proposition 3. For β2 they are markedly dissimilar, and indeed the standard

error of the LS estimator becomes increasingly large with T fixed and n increasing.

Comparing the TLS estimator with the ALS estimator, the latter consistently exhibits

a larger standard error. This supports the findings of Proposition 7. Table 2 below

presents empirical coverage probabilities of a 95% two-sided confidence interval. For

the TLS estimator these are computed using the fixed-T covariance matrix estimator
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described in Section 5.1.1. For the LS estimator these are computed using the covariance

matrix estimator described in Moon and Weidner (2017) with the bandwidth parameter

set equal to ⌊log(T )⌋.

Table 2: Empirical Coverage Probability of a 95% Confidence Interval

β1 β2

n \ T 6 9 12 6 9 12

LS

100 0.887 0.910 0.924 0.221 0.303 0.456

250 0.901 0.928 0.928 0.122 0.187 0.347

500 0.903 0.924 0.928 0.067 0.101 0.221

TLS

100 0.942 0.941 0.944 0.892 0.923 0.928

250 0.946 0.950 0.946 0.940 0.948 0.947

500 0.948 0.949 0.950 0.945 0.947 0.952

ALS

100 0.940 0.947 0.944 0.910 0.937 0.941

250 0.948 0.945 0.948 0.943 0.947 0.947

500 0.947 0.949 0.951 0.946 0.945 0.950

As one would expect, the coverage probabilities of the LS estimator are poor when

T is small, and only start to improve when T increases. Indeed, for β2 the coverage

probabilities quickly decline with T fixed and n increasing. Both the ALS and TLS

estimators exhibit good coverage, with these quickly approaching their nominal value

with T fixed and n increasing.

Table 3 below shows the percentage of times the eigenvalue ratio test described in

Section 5.2 correctly detects the true number of factors in the model. This entails first

estimating the model with the number of factors overestimated (Re = 5 is used in

simulations), after which a pure factor model can be constructed, to which the test can

then be applied. The parameter ϱn is set equal to T
1
4 /
√
n.30

Table 3: Percentage of Estimated R equal to R0

n \ T 9 12 15

100 75.84 83.59 87.33

250 89.51 95.63 97.37

500 95.03 98.26 99.38

30The values of T are slightly increased to ensure the condition T ≥ Tmin is satisfied.
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Overall the test performs well, with the error rate decreasing as either n or T in-

creases.

6.2 Large Panel Exercise

This second exercise compares the LS and TLS estimators, as well as their bias-corrected

counterparts, in a setting where both n and T are large. Outcomes are generated

according to

Y = α0Y −1 + β0,1X1 + β0,2X2 +Λ0F
⊤
0 + ε,

with α0 = 0.5, β0,1 = 1 and β0,2 = −1. The regressors, the factors, the loadings, and the

covariates are generated in the same manner as in the previous design. The error is also

generated as previously, but with the autoregressive parameter ϕ = 0. Table 4 below

presents empirical bias and empirical standard error for the LS estimator (LS), the bias-

corrected LS estimator (LS-BC), the TLS estimator (TLS), and the bias-corrected TLS

estimator (TLS-BC). The bandwidth parameter for both the LS and TLS estimators is

set equal to 1.
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Table 4: Empirical Bias (Empirical Standard Error)

α β1 β2

n \ T 10 25 50 10 25 50 10 25 50

LS

100
-0.031 -0.006 0.003 -0.026 -0.012 -0.007 0.125 0.050 0.021

(0.730) (0.559) (0.529) (1.143) (1.048) (1.027) (1.152) (1.063) (1.046)

250
-0.054 -0.008 -0.002 -0.018 0.000 0.001 0.106 0.039 0.018

(0.909) (0.583) (0.534) (1.124) (1.050) (1.025) (1.117) (1.064) (1.026)

500
-0.057 -0.012 -0.012 -0.063 0.002 0.006 0.111 0.030 0.023

(1.150) (0.647) (0.544) (1.138) (1.032) (1.014) (1.132) (1.055) (1.021)

LS-BC

100
-0.017 -0.003 0.004 -0.008 -0.010 -0.007 0.107 0.048 0.021

(0.594) (0.534) (0.524) (1.142) (1.047) (1.027) (1.151) (1.063) (1.046)

250
-0.020 -0.005 -0.001 0.009 0.003 0.002 0.079 0.036 0.017

(0.611) (0.527) (0.518) (1.123) (1.050) (1.025) (1.116) (1.064) (1.026)

500
-0.023 -0.007 -0.009 -0.025 0.006 0.007 0.073 0.026 0.022

(0.648) (0.533) (0.512) (1.135) (1.032) (1.014) (1.129) (1.055) (1.021)

TLS

100
-0.021 -0.002 0.003 -0.011 -0.011 -0.007 0.033 0.026 0.021

(0.746) (0.603) (0.529) (1.143) (1.047) (1.027) (1.142) (1.061) (1.046)

250
-0.005 -0.006 -0.002 0.015 0.002 0.001 0.019 0.013 0.006

(0.770) (0.638) (0.589) (1.124) (1.050) (1.025) (1.110) (1.063) (1.026)

500
-0.010 -0.013 -0.012 -0.015 0.006 0.007 0.023 0.007 0.012

(0.772) (0.660) (0.608) (1.136) (1.032) (1.014) (1.125) (1.054) (1.021)

TLS-BC

100
-0.015 0.000 0.004 -0.006 -0.010 -0.007 0.027 0.025 0.021

(0.739) (0.595) (0.524) (1.143) (1.047) (1.027) (1.142) (1.061) (1.046)

250
0.001 -0.005 -0.001 0.019 0.003 0.002 0.016 0.013 0.006

(0.767) (0.635) (0.585) (1.124) (1.050) (1.025) (1.110) (1.063) (1.026)

500
-0.007 -0.012 -0.011 -0.012 0.007 0.007 0.020 0.007 0.012

(0.770) (0.659) (0.606) (1.136) (1.032) (1.014) (1.125) (1.054) (1.021)

Overall the bias for the TLS estimator is smaller than that of the LS estimator, both

with and without bias correction. This is particularly notable for β2 where, owing to the

correlation betweenX2, the factors, and the loadings, the LS estimator exhibits sizeable

bias, particularly at smaller values of T . As in the previous design, it is also found that

as sample size increases the standard error of the LS and TLS estimators generally

becomes similar. Interestingly, for the autoregressive parameter α, the standard error

of both estimators is observed to increase with T fixed and n increasing, and decrease

for n fixed and T increasing. For the TLS estimator, this is explained by the presence

of variance components associated with the lagged outcomes which are of order T/n.31

When both n and T are large, these reduce the standard error, but when T is fixed

31These are Υ(2) and Υ(4); see Appendix E.
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and n is large, these additional components diminish resulting in an increased standard

error.32

Table 5 below presents empirical coverage probabilities of a 95% two-sided confi-

dence interval. Two variants are displayed for the TLS estimator: TLS (Long) which is

computed using the large-T covariance matrix estimator described in Section 5.1.2, and

TLS (Short) which uses the fixed-T covariance estimator described in Section 5.1.1. In

both cases bias correction is performed using the results in Section 5.1.2.

Table 5: Empirical Coverage Probability of a 95% Confidence Interval

α β1 β2

n \ T 10 25 50 10 25 50 10 25 50

LS

100 0.842 0.920 0.937 0.921 0.941 0.944 0.914 0.933 0.937

250 0.744 0.913 0.934 0.924 0.940 0.946 0.926 0.935 0.945

500 0.630 0.873 0.929 0.920 0.943 0.945 0.922 0.937 0.947

LS-BC

100 0.911 0.932 0.940 0.921 0.941 0.943 0.915 0.933 0.938

250 0.904 0.937 0.942 0.924 0.940 0.946 0.924 0.935 0.945

500 0.885 0.938 0.945 0.921 0.942 0.946 0.923 0.938 0.947

TLS
(Long)

100 0.916 0.933 0.937 0.923 0.941 0.944 0.921 0.934 0.937

250 0.919 0.938 0.941 0.924 0.939 0.946 0.928 0.935 0.945

500 0.926 0.938 0.943 0.921 0.943 0.946 0.926 0.938 0.947

TLS-BC
(Long)

100 0.919 0.937 0.940 0.923 0.940 0.943 0.921 0.934 0.938

250 0.921 0.940 0.943 0.924 0.939 0.946 0.928 0.935 0.945

500 0.927 0.939 0.944 0.921 0.943 0.946 0.926 0.938 0.947

TLS
(Short)

100 0.939 0.937 0.937 0.944 0.945 0.943 0.942 0.942 0.940

250 0.944 0.946 0.944 0.948 0.947 0.949 0.949 0.943 0.948

500 0.950 0.946 0.946 0.946 0.952 0.950 0.949 0.946 0.951

TLS-BC
(Short)

100 0.939 0.940 0.942 0.944 0.945 0.943 0.942 0.942 0.940

250 0.943 0.947 0.947 0.948 0.947 0.949 0.949 0.943 0.948

500 0.951 0.948 0.947 0.946 0.952 0.950 0.949 0.946 0.951

For the autoregressive parameter α, the coverage of the LS estimator declines with

T fixed and n increasing. This is expected due to bias of order n/T from which the

LS estimator is known to suffer. The bias-corrected LS estimator performs better, with

coverage being much closer to its nominal value. However, this also performs poorly at

32In unreported additional simulation output which includes n = 1000 and n = 2500, the standard
error of the TLS estimator is seen to stabilise, while it continues to increase for the LS estimator.
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smaller values of T , in which case coverage is also observed to decline with T fixed and

n increasing. For smaller values of T the TLS (Long) estimator performs better than

the LS estimator. This is particularly noticeable for the autoregressive coefficient where

the coverage probabilities of the TLS estimator improve with T fixed and n increasing.

Overall the LS and LS-BC estimators require larger values of T in order to attain nominal

coverage. When both n and T are large, the coverage probabilities for the LS and TLS

(Long) estimators are broadly similar, with and without bias-correction. Surprisingly,

the TLS (Short) estimator outperforms both the LS and TLS (Long) estimators, when

n is large and T is small, and also where both n and T are large.

Finally, Table 6 below shows the percentage of times the eigenvalue ratio test cor-

rectly detects the true number of factors. As previously, the parameter ϱn is set equal

to T
1
4 /
√
n.

Table 6: Percentage of Estimated R equal to R0

n \ T 10 25 50

100 84.59 98.97 99.94

300 94.50 99.96 100.00

500 97.81 99.99 100.00

Similar to the results for the static model, the test performs well with the error rate

declining with either n or T increasing. The overall error rate in this second design is

smaller due to the larger values of T .

7 Conclusion

This paper has introduced a method to estimate linear panel data models with inter-

active fixed effects which has been shown to be consistent and asymptotically unbiased

when n is large and T fixed, and also when both n and T are large, provided T/n→ 0.

This stands in contrast to the usual case where the LS estimator is generally inconsistent

when n is large and T is fixed, and suffers from asymptotic bias when both n and T

are large. Careful study of this estimation approach has also revealed interesting con-

nections between the LS estimator and several method of moments-based approaches,

bridging the gap between what are, at present, two quite separate literatures.
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