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1 Introduction

Let Y0, Y1, . . . , YT be a bivariate random process on a finite state space. Once the random

variable Y0 has been drawn from an initial distribution, the sequence Y1, . . . , YT evolves

according to a time-homogenous Markov chain. Partition Yt as (Xt, Zt). The random

variables X0, X1, . . . , XT can take on r values and are observable. The random variables

Z0, Z1, . . . , ZT can take on q values and are latent. We complete the model with the

assumption that the transition probability

P{Xt = xt, Zt = zt|Xt−1 = xt−1, Zt−1 = zt−1}

factors as

P{Xt = xt|Xt−1 = xt−1, Zt = zt} × P{Zt = zt|Xt−1 = xt−1, Zt−1 = zt−1}. (1.1)

This is a redundancy statement on further lags of the latent variable and is intuitive. The

state space of the Xt is taken to be the set of positive integers up to r and the state space

of the Zt is normalized to the set of positive integers up to q. The former restriction is

imposed for notational convenience—translation to a general set is immediate—while the

latter normalization, given that the process in question is unobserved, is without loss of

generality. Also, given that the state spaces are finite, our focus on scalar random variables

is innocuous.

Our aim in this paper is to (nonparametrically) recover the distribution of the initial

condition Y0 and the (time invariant) transition probabilities from Yt−1 to Yt from only the

(observed) distribution of X0, X1, . . . , XT . We show that, subject to conditions spelled out

below, this is possible as soon as three transitions are observed, i.e., T ≥ 3. Identification

is to be understood as being up to an arbitrary permutation of the state space of the Zt.

Indeed, as these random variables are unobserved, their support can be relabelled without

any observable implications. Such invariance is standard in models that feature latent

variables and is harmless for our purposes.

The problem that we study here arises in models of dynamic discrete choice, which

have numerous applications (e.g., Miller 1984, Keane and Wolpin 1997, Aguirregabiria and

2



Mira 2007). Our setup encompasses several specifications that have received considerable

attention. The first such model is the popular hidden Markov model (see Cappé, Moulines

and Rydén 2005, Allman, Matias and Rhodes 2009, Gassiat, Cleynen and Robin 2016, and

Bonhomme, Jochmans and Robin 2016a). In this case, X0, X1, . . . , XT is assumed to be a

stationary sequence whose components are independent conditional on Z0, Z1, . . . , ZT , the

distribution of Xt given Z0, Z1, . . . , ZT depends only on Zt, and the sequence Z0, Z1, . . . , ZT

is a (stationary) Markov chain. In such a setting, (X0, Z0) is then assumed to be a draw

from the steady-state distribution and the transition probability in (1.1) further simplifies

to

P{Xt = xt|Zt = zt} × P{Zt = zt|Zt−1 = zt−1}.

Our framework is more general in the following three ways. First, it does not require

full stationarity. Second, it allows for the observable variables to be dependent even after

conditioning on the latent variables, as Xt is Markovian conditional on Zt. Third, it

allows the transition probabilities in the hidden chain to depend on past realizations of

the observable chain. That is, the evolution of the unobservable chain depends on the

observable variables. This is important, and Pouzo, Psaradakis and Sola (2022) discuss

the usefulness of this generalization and provide many examples. The recent literature

on heterogeneity in short panel data (e.g., Bonhomme and Manresa 2015) has used a

framework of discrete heterogeneity that can vary over time and stresses that these changes

should be allowed to depend on time-varying factors.

The second model nested in our setup is obtained by complementing the restrictions

of the hidden Markov model with the condition that the latent variable does not change

over time, i.e., that P{Zt = Z0} = 1 for all t ≥ 1. In this case, the joint distribution of

X0, X1, . . . , XT factors as a multivariate mixture model (see, e.g., Hall and Zhou 2003) with

identically distributed measurements (as in Bonhomme, Jochmans and Robin 2016b and

Vandermeulen and Scott 2020). The latent variable Z0 governs which mixture component

the sequence X0, X1, . . . , XT is drawn from.

Finally, a dynamic version of the mixture model is a third special case. Here, after

drawing (X0, Z0) from an initial distribution, the Zt are held fixed at Z0 while the Xt
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follow a Markov chain whose transition kernel depends on Z0. Here, the distribution of Xt

given Z0 can depend on t as the initial condition (X0, Z0) need not be a draw from the

steady-state distribution of the process (presuming that such a distribution exists). This

type of structure was considered by Kasahara and Shimotsu (2009) and, more recently, by

Higgins and Jochmans (2021).

Our focus here is on identification. Given the discreteness of the variables involved

estimation can be done by maximum likelihood using some version of the EM algorithm.

Ailliot and Pène (2015) provide a discussion and many references on this. Procedures

to recover parameters of structural dynamic discrete-choice models that can be justified

by our identification results are given in Arcidiacono and Jones (2003), Arcidiacono and

Miller (2011), Hotz and Miller (1993), Hotz, Miller, Sanders and Smith (1994), and Bajari,

Benkard and Levin (2007).

The question of identification in our model cannot be answered by relying on existing

methods for hidden Markov chains or for multivariate mixtures. While our arguments bare

some similarity with the approaches taken in Bonhomme, Jochmans and Robin (2016a)

and Higgins and Jochmans (2021) (which look at special cases of our setup), the fact that

the observed and unobserved variables are allowed to be jointly Markovian makes the key

restrictions used there inapplicable here. As far as we are aware, the only other work that

has taken up the problem of identification here is Hu and Shum (2012). However, their

argument only applies to the case where the state spaces of the observable and the latent

Markov chain are the same, i.e., r = q. Additionally, they rely on multilinear restrictions

of the type encountered in static multivariate mixtures, as in Hall and Zhou (2003), Hu

(2008), and Bonhomme, Jochmans and Robin (2016a). To deal with the dynamics implied

by the Markovian structure they additionally assume that there exists a functional of the

distribution of Xt given Xt−1 = x, Zt = z that is known to be strictly monotonic in z for

all x. This allows them to circumvent indeterminacies due to a permutational invariance

in their argument and obtain identification. The approach that we take in this paper does

not require this type of assumption. This is important because monotonicity restrictions of

this type can be hard to justify in practice. They also pose obvious difficulties when trying
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to enforce them during estimation.

The plan of the paper is as follows. Section 2 contains our identification argument and

its proof for the case T = 3. Section 3 provides a discussion on the assumptions that

underly our result and on how the proof adjusts in the case T > 3. It also contrasts our

approach with that of Hu and Shum (2012), highlighting where the restriction that r = q

and their monotonicity requirements come into play. A short conclusion section ends the

paper.

2 Identification

We first show how identification can be achieved from knowledge of the joint distribution

of four observations, X0, X1, X2, X3. Below we discuss how our argument generalizes to the

case where longer time series are available.

Consider the r × r matrix

(P x)i,j := P{X0 = j,X1 = x,X2 = i}

for each x. Our model implies that X0 and X2 are independent conditional on (X1, Z1).

Therefore,

P x = AxB
>
x , (2.2)

where we introduce r × q matrices

(Ax)i,z := P{Xt = i|Xt−1 = x, Zt−1 = z}, (Bx)i,z := P{X0 = i,X1 = x, Z1 = z}.

Impose the following assumption.

Assumption 1. P x has rank q for all x.

Assumption 1 implies that there exist q × r matrices Ux and V x such that

UxP xV
>
x = Iq, (2.3)
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where Iq is the q× q identity matrix. The matrices Ux and V x may be constructed from a

singular-value decomposition of P x. Combining (2.2) with (2.3) and invoking Assumption

1 shows that

UxP xV
>
x = (UxAx)(V xBx)> = QxQ

−1
x = Iq,

where we let Qx := UxAx and note that (V xBx)> = Q−1x follows as a consequence of the

decomposition.

Next consider the r × r matrix

(P x1,x2)i,j := P{X0 = j,X1 = x1, X2 = x2, X3 = i}

for each pair (x1, x2). Similarly to (2.2), the Markov structure of our model implies the

factorization

P x1,x2 = Ax2
Kx1,x2

B>x1
,

where the q × q matrix

(Kx1,x2)z2,z1 := P{Xt = x2, Zt = z2|Xt−1 = x1, Zt−1 = z1},

contains the transition probabilities of our Markov chain at given values of the observable

variables. Thus, the model implies the set of multilinear restrictions

Mx1,x2
:= Ux2

P x1,x2
V >x1

= (Ux2
Ax2

)Kx1,x2
(V x1

Bx1
)> = Qx2

Kx1,x2
Q−1x1

for all pairs (x1, x2). The transition probabilities of the Markov chain can be recovered from

these restrictions if we can learn the matrices Q1, . . . ,Qr up to a common permutation of

their columns. We now turn to conditions under which this can be achieved. Once the

transition probabilities are known the distribution of the initial condition Y0 = (X0, Z0)

can be recovered with little additional work.

Observe that the redundancy condition in (1.1) gives the factorization

Kx1,x2 = Dx1,x2T x1

for q × q matrix

(T x)z2,z1 := P{Zt = z2|Xt−1 = x, Zt−1 = z1}
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and q × q diagonal matrix

(Dx1,x2)z,z := P{Xt = x2|Xt−1 = x1, Zt = z}.

If, for some (x1, x2), the matrix Kx1,x2 is also invertible, then

Gx1

x′2,x2
:= Kx1,x

′
2
K−1x1,x2

= Dx1,x
′
2
D−1x1,x2

is a diagonal matrix for any x′2. Hence,

Mx1,x
′
2
M−1

x1,x2
= Qx′2

Gx1

x′2,x2
Q−1x2

(2.4)

for any x′2. Now, if there is another pair (x′1, x
′
2) 6= (x1, x2) such that matrix Kx′1,x

′
2

is

invertible,

Mx′1,x2
M−1

x′1,x
′
2

= Qx2
G

x′1
x2,x

′
2
Q−1x′2

(2.5)

follows by the same argument. Combining (2.4) and (2.5) yields

(Mx′1,x2
M−1

x′1,x
′
2
)(Mx1,x

′
2
M−1

x1,x2
) = Qx2

(G
x′1
x2,x

′
2
G

x1

x′2,x2
)Q−1x2

.

This is an eigendecomposition with Qx2
being the matrix of eigenvectors.

The above discussion motivates the following assumption. We let

X x := {(x1, x
′
1, x
′) : x′1 6= x1, x

′ 6= x, rank (Kx1,x
) = q, rank (Kx′1,x

′) = q}

for each x.

Assumption 2. For each x,

(i) dx := |X x| ≥ 1; and

(ii) the elements h1, . . . ,hdx of the set of vectors

Hx :=
{

diag(G
x′1
x,x′G

x1

x′,x) : (x1, x
′
1, x
′) ∈ X x

}
are such that all the rows of the q × dx matrix (h1, . . . ,hdx) are distinct.

7



Part (i) of Assumption 2 ensures that at least one matrix exists that can be diagonalized by

Qx for each x. When multiple such matrices exist, Qx is a joint diagonalizer. Part (ii) is a

necessary and sufficient condition for the (joint) diagonalizer Qx to be unique up to scaling

and ordering of its columns; this follows from De Lathauwer, De Moor and Vandewalle

(2004, Theorem 6.1). Thus, Assumption 2 enables us to identify

Q̃x := QxΩx∆x,

where Ωx is a diagonal scaling matrix and ∆x is a permutation matrix, for each x.

The matrix Ωx can be recovered, up to permutation of the entries on its main diagonal,

from restrictions on the r-vector

(px)i := P{X0 = i,X1 = x}.

Indeed, because px = Bxιq for ιq the q-vector of ones, we have that

V x px = V xBx ιq = Q−>x ιq,

and, hence, it holds that

Q̃
>
xV x px = ∆−1x Ωx ιq = ∆−1x Ωx∆x ιq,

where we have used the fact that each row of any permutation matrix sums to unity to

make the last transition. Further, because ∆−1x Ωx∆x is a diagonal matrix, this equation

yields

Ω̃x := ∆−1x Ωx ∆x

for all x.

To recover a common permutation matrix, we impose our third and final assumption.

Assumption 3. There exists a value x0 such that, for all x, Gx′

x,x0
is invertible for some

x′.

With x0 as in Assumption 3, by (2.4),

Q̃
−1
x Mx′,xM

−1
x′,x0

Q̃x0
= ∆−1x ∆x0

(∆−1x0
Ω−1x G

x′

x,x0
Ωx0

∆x0
) (2.6)
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for all x and some x′. First, notice that ∆−1x ∆x0
is a permutation matrix and that the

matrix in parentheses on the right-hand side is diagonal. Therefore, the latter is equal to

the matrix on the left-hand side up to ordering of its rows. It then follows that the column

sums of Q̃
−1
x Mx′,xM

−1
x′,x0

Q̃x0
identify ∆−1x0

Ω−1x G
x′

x,x0
Ωx0

∆x0
. Next, because Assumption 3

implies that these matrices are invertible, we can solve for the permutation matrix in (2.6)

to get

Sx,x0
:= ∆−1x ∆x0

= (Q̃
−1
x Mx′,xM

−1
x′,x0

Q̃x0
)(∆−1x0

Ω−1x G
x′

x,x0
Ωx0

∆x0
)−1

for each x. We may then compute

S−1x,x0
Ω̃x Sx,x0 = ∆−1x0

Ωx∆x0 =: Ω∗x,

and recover

Q∗x := Q̃xSx,x0(Ω
∗
x)−1 = Qx∆x0

for all x. Thus, we have identified the matrices of eigenvectors Q1, . . . ,Qr up to a common

column permutation.

We may now recover the transition probabilities of the Markov chain from

K∗x1,x2
:= (Q∗

x2
)−1Mx1,x2

Q∗
x1

= ∆−1x0
Kx1,x2

∆x0
.

It then only remains to identify the distribution of the initial condition, Y0 = (X0, Z0).

This distribution is the q × r table (π1, . . . ,πr), with columns

(πx)z := P{X0 = x, Z0 = z}.

To see how this may be done, note that

p′x = Axπx, (p′x)i := P{X1 = i,X0 = x}.

Observe that the ith row of the r × q matrix Ax is equal to the column sum of Ki,x, i.e.,

(Ax)i,z = (ι>q Ki,x)z. Performing the same operation on K∗i,x yields A∗x := Ax∆x0 for all x.

Assumption 1 implies that this latter matrix has full column rank for each x. Therefore,

π∗x := ((A∗x)>A∗x)−1(A∗x)>p′x = ∆−1x0
πx
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is identified. With all unknowns recovered up to a common permutation our argument is

complete.

Theorem 1. Under Assumptions 1–3 the distribution of Y0 = (X0, Z0) and the transition

kernel of Yt = (Xt, Zt) are identified from the distribution of X0, X1, X2, X3.

3 Comments

3.1 Discussion on the required conditions

The assumptions underlying Theorem 1 are in line with those used in related work on the

identification of multivariate mixture models.

Assumption 1 is equivalent to demanding that the matrices Ax and Bx have maximal

column rank for each x. Recall that

(Ax)i,z = P{Xt = i|Xt−1 = x, Zt−1 = z}.

That is, the zth column of Ax contains the distribution of Xt given Xt−1 = x and Zt = z.

The matrix Bx, in turn, factors as CxΛx, where

(Cx)i,z := P{X1 = i|X2 = x, Z2 = z},

i.e., the zth column of Cx contains the conditional distribution of X1 given X2 = x and

Z2 = z, and Λx is a diagonal matrix with

(Λx)z,z := P{X2 = x, Z2 = z}.

Thus, the rank conditions in Assumption 1 amount to linear-independence requirements

on certain conditional distributions of the Markov chain, together with a full support

condition on Y2 = (X2, Z2). Such linear-independence conditions imply irreducibility of

the mixture model and are standard in the analysis of multivariate latent-variable models

(Hu 2008, Allman, Matias and Rhodes 2009, Bonhomme, Jochmans and Robin 2016a,b,

Vandermeulen and Scott 2020).
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Consider Part (i) of Assumption 2 next. It demands invertibility of Kx1,x2 = Dx1,x2T x1

for several pairs of values (x1, x2). Obviously, this requires that both the diagonal matrix

Dx1,x2 and the square matrix T x1 are invertible. The former requirement is equivalent to

P{Xt = x2|Xt−1 = x1, Zt = z} > 0

holding for all z, i.e., state x2 being reachable from state x1 for all values z. The latter

requirement will hold if the distributions P{Zt = z2|Zt−1 = z1, Xt−1 = x1}, when seen as

a function of z1, are linearly dependent. This is a rank condition that is again familiar

from the literature on hidden Markov models (as in Gassiat, Cleynen and Robin 2016

and Bonhomme, Jochmans and Robin 2016a). Our result only requires invertibility of the

matrix Kx1,x2 for some pairs (x1, x2), and not necessarily for all pairs. Moreover, Theorem

1 covers cases where some states in the observable chain may not be reachable for certain

states of the latent variable, and can accommodate situations in which the transition kernel

of the hidden chain is singular for certain values of the observables. Part (i) of Assumption

2 ensures that the matrices Q1, . . . ,Qr can be characterized as eigenvectors.

Part (ii) of Assumption 2 is a condition on the associated eigenvalues. If dx = 1 then

Qx diagonalizes a single matrix and the assumption demands the eigenvalues to be unique.

More generally, Qx is the joint diagonalizer of a collection of dx matrices, and Part (ii) of

the assumption is a necessary and sufficient condition for uniqueness of the matrix of joint

eigenvectors (up to scale and permutation)

Assumption 3, finally, is the requirement that there is a value x0 such that for each x

there exists a value x′ for which

P{Xt = x0|Xt−1 = x′, Zt = z} > 0, P{Xt = x |Xt−1 = x′, Zt = z} > 0,

for all z. Moreover, for each state x we can find a state x′ from which both x and x0 are

reachable for all z. The need for this requirement arises from the dynamics on the observable

chain. It is fundamental in recovering the transition probabilities from Yt−1 = (Xt−1, Zt−1)

to Yt = (Xt, Zt) up to an (arbitrary) labelling of the support of the sequence of the latent

sequence {Zt}.
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3.2 Longer time series

With more than four time-series observations we can obtain Theorem 1 under a weaker

version of Assumption 1. Say we have access to the joint distribution of X0, X1, . . . , XT .

Let b·c be the floor function. We can redefine P x to be the table of X0, X1, . . . , XT−1 at

XbT/2c = x and P x1,x2 the table of X0, X1, . . . , XT at XbT/2c = x1 and XbT/2c+1 = x2, both

unfolded into matrices. These matrices admit the same type of factorization as performed

above. The proof of identification then generalizes in a straightforward manner. The

matrices P x are now of dimension r(T−2)/2 × r(T−2)/2 when T is even and of dimension

r(T−1)/2 × r(T−3)/2 when T is odd. Clearly, a larger value of T can only be beneficial in

making requirement that rank(P x) = q easier to satisfy. As such, having access to longer

panel data has the same type of identifying power as working with observables that live on

a richer state space.

3.3 Comparison to existing work

Hu and Shum (2012) established an identification result for the transition probabilities in

our model for the case r = q. The assumptions they rely on are similar to ours (although

our Assumption 2 is weaker than their corresponding Assumption 3) except for the last one.

We use Assumption 3 to show how the matricesQ1, . . . ,Qr are recoverable up to a common

permutation of their columns. This is crucial to be able to identify the matrices Kx1,x2 up

to a re-arrangement of their entries that is independent of the pair (x1, x2). When r = q

Assumption 1 implies that Ax and Bx are square and invertible. Hence, transforming the

r×r matrices P x1,x2 to the q×q matrices Mx1,x2 does not achieve any dimension reduction

and we can proceed without it. Furthermore, in the arguments of Hu and Shum (2012),

Ax then plays a similar role to our Qx. In contrast to the columns of Qx, the columns

of Ax are probability mass functions. As these are known to sum to one, their scale is

readily recovered. However, the model restrictions used by Hu and Shum (2012) only yield

the matrices A1, . . . ,Ar up to different (arbitrary) permutations of their columns. This

is insufficient to identify the transition kernel of the Markov process. To arrive at the
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same conclusion as us, instead of exploiting dynamic restrictions implied by the Markov

chain, they impose that for each x there exists a known functional of the distribution of

Xt given Xt−1 = x and Zt−1 = z that is strictly monotonic in z. Such a condition implies

that the columns of the matrices A1, . . . ,Ar can be re-arranged such that they satisfy this

monotonicity requirement. Once this has been done,

P x1,x2
P−1x1

= Ax2
Kx1,x2

A−1x1

can be used to recover the matrix of transition probabilities of the Markov chain; recall

that, when r = q, P x is invertible for all x by Assumption 1. Our results states that

invoking monotonicity conditions to claim identification is not needed. This is useful as

such conditions may be difficult to justify and can prove difficult to deal with when turning

to estimation.

4 Conclusion

This paper has considered a generalization of the hidden Markov model where the aim is to

nonparametrically recover the initial condition and transition kernel of a bivariate Markov

chains in which one of the variables is latent. Primitive conditions on the process were

given under which this can be achieved from short longitudinal data with as little as four

waves.
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